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‘Tis all a chequer-board of nights and days
where destiny with men for pieces plays;
hither and thither moves and mates and slays
and one by one back in the closet lays.

The Rubaiyat of Omar Khayyam

ABSTRACT. It is proved that a natural generalization of chess to an nxn board is
complete in exponential time. This implies that there exist chess-positions on an
nxn chess-board for which the problem of determining who can win from that position
requires an amount of time which is at Teast exponential in n .

1. INTRODUCTION

From among all the games people play, chess towers as the most absorbing and
widely played. Indeed, if attention is restricted to 2-person games of perfect infor-
mation without chance moves played outside the Orient, the ever rejuvenating interest
in the 1500 year old game has a quality of depth and breadth well beyond that of any
potential rival. It is noteworthy, then, that in the Jong string of complexity
results for games, chess had yet to appear. Recently J. Storer announced that chess
on an nxn board is Pspace-hard [10]. See also J.M. Robson [7]. We will show that
a natural generalization of chess to nxn boards {s complete in exponential time,
the first such result for a "real” game. This implies that for any k x 1, there
are infinitely many positions = such that any algorithm for deciding whether White
(Black) can win from that position requires at least ciﬁi time-steps to compute,
where ¢ > 1 is a constant, and |w] 1is the size of = . Generalized chess is
thus provably intractable, which is a stronger result than the complexity results for
board games such as Checkers, Go, Gobang and Hex which were shown to be Pspace-hard
11,3,5,61.

We Tet generalized chess be any game of a class of chess-type-games with one
king per side played on an nxn chessboard. The pieces of every game in the class
are subject to the same movement rules as in 8x8 chess, and the number of White
and Black pawns, reoks, bishops and queens each increases as some fractional power
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of n. Beyond this growth conditicon, the initial position is immaterial, since we
analyze the problem of winning for an arbitrary board position.

Unfortunately, our constructions seem to violate the spirit of 8x8 chess, in
much the same way as the complexity proofs for Checkers, Go, Gobang and Hex mentioned
above, Typical positions in our reduction do not look like larger versions of typi-
cal 8x8 chess endgames. Although we have not tried to answer guestions of reacha-
bility, it seems offhand as though players would have a hard time trying to reach our
board pesitions from any reasonable starting position. (Reachability may not seem
quite as unfeasible, perhaps, if we recall the chess rule stating that a pawn reaching
the opposite side of the board can become any piece of the same color other than pawn
or king [4]1.) What we can say, however, is that certain approaches for deciding
whether a position in 8x8 chess is a winning position for White may not be very
promising, namely those approaches which work for arbitrary positions and generalize
to nxn boards. Such approaches use time exponential in n, and hence can be use-
ful only if the exponential effect had not yet been felt for n=8 .

Thus, while we may have said very 1ittle if anything about 8x8 chess, we
have, in fact, said as much about the complexity of deciding winning positions in
chess as the tools of reduction and completeness in computational complexity allow
us to say.

Our result is in line with the suggestion to demonstrate the complexity of
interesting board games by imbedding them in families of games [8]. An interesting
corcllary of our result is that if Pspace # Exptime, as the conjecture goes, then
there is no polynomial bound on the number of moves necessary to execute a perfect
strategy. This is so because Pspace « Exptime, and the "game-tree” of chess can be
traversed in endorder to determine the win-lose-tie membership of each node (game
position}. Though this takes an exponential amount of time, the memory requirement
at each step is only the depth p(n) of the tree — which is kept on a stack - and
the description of a terminal position. Thus, if p{n) {is polynomial, then the game
is in Pspace. Since chess is complete in Exptime, it belongs to the hardest problems
there, hence it 1ies in Exptime — Pspace if Pspace # Exptime.

For the sake of the uninitiated, we now give a short informal introduction to
the basic notions of computational complexity. Let S be a subclass of decision
problems (i.e. problems whose answer is "Yes" or “No"). For decision problems o
Ty > We say that m, s polynomially transformable {or reducible} to Ty {notation:

o ﬁz) , 1f there exists a function f from the set of instances of Al to the
set of instances of Ty such that:

(i) I s an instance of my for which the answer is "Yes" if and only if
f(I) 1is an instance of o for which the answer is "Yes",

(i1} f{I} 1is computable by a polynomial time algorithm in the size of I (a
“polynomial time algorithm").
A decision problem = 1is S-complete if:
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(i) w€s,

{(ii) for every w' €5, 7' =7,

A decision problem m 1is S-hard if {ii) holds but (i) does not necessarily
hold. A decision problem is intractable if it cannot be decided by a polynomial time
algorithm,

A nondeterministic algorithm is an "algorithm" which can "guess" an existential
solution, such as a path in a tree and then verify its validity by means of a deter-
ministic-élgorithm.

Important classes of decision problems are the class P of all decision problems

1 with (deterministic) algorithms whose running time is bounded above by a polynomial
in the size |v| of = ; the class NP (nondeterministic polynomial) of all deci-
sion problems 7 with nondeterministic algorithms whose running time is bounded above
by a polynomial in |w] ; the class Pspace of all decision problems = whose
algorithms require an amount of memory space bounded above by a polynomial in [« ;
and the class Exptime of all decision problems = with (deterministic) algorithms
whose running time is bounded above by an exponential function in |n]| . The
following basic relations hold:

P = NP c Pspace ¢ Exptime

It is not known whether any of these inclusions is proper, except that P # Exptime.
Furthermore, NP and Pspace are not known to contain any intractable decision prob-
lems, but Exptime is.

From the definition of « it follows that if Ty E Ty then T, €P implies
™ € P . Therefore the S-complete problems for any S are the "hardest" problems
of S. In particular for S-=Exptime, the S-complete problems are all intractable.
For further details and a formal treatment of this topic the reader is referred to
Garey and Johnson [2].

2. THE REDUCTION

Let Q be the following question: Given an arbitrary position of a generalized
chess-game on an nxn chessboard from our class of chess games, can White {Black)
win from that position? Following [2], we define Exptime to be the set of decision
problems with time-complexity bounded above by zp(n} for some polynomial p of the
input size n. Since in chess there are six distinct pieces of each color, the num-
ber of possible configurations in nxn chess is bounded by 13", hence
Q € Exptime. We shall show that G3 « ( , where G3 is the following Boolean game
proved complete in exponential time by Stockmeyer and Chandra [9]. Throughout W
(B) stands for White (Black). As usual, a literal is a Boolean variable or its com-
plement.

Every position in G3 is a 4-tuple {7, W-LOSE(X,Y), B-LOSE{X,Y}, o} , where
v € {W,B} denotes the player whose turn it is to play from the position,

W-LOSE = C]1 v C12 Ve V C]p and B-LOSE = CZI v C22 Voaue v C2q are Boolean
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formulas in 12DNF, that is each C]i and each CZj is a conjunction of at most 12
Titerals {1 si<sp, T<j<gq); and o is an assignment of values to the set
of variables X U Y . The players play alternately. Player W (B) moves by changing
the value of precisely one variable in X (Y) . In particular, passing is not per-
mitted. W (B) loses if the formula W-LOSE (B-LOSE) is true after some move of player
W (B) . Thus W can move from (W, W-LOSE, B-LOSE, a) to (B, W-LOSE, B-LOSE, a')
iff B-LOSE s false under the assignment o (otherwise the game already terminated
previously), and o and a' differ in the assignment of exactly one variable in X.
If W-LOSE is true under the assignment o' , then W just lost. A player who vio-
lates any of the game's rules loses immediately.

In order to show G3 « (Q , we have to simulate 83 on an nxn chess-board.
Specificallysthe goal is to construct a position on the board where only one rook
and two queens per variable can move. All other pieces are deadlocked. Each rook is
permitted to be in only one of two positions, which have the meaning of assigning the
values of 1 {T) or 0 (F) to the corresponding variable. The positioning of the
deadlocked pieces force the queens to move through predefined "channels" in order to
reach the opponent's king, and the positioning of the rook determines one of two
possible avenues through which a queen may pass. The overall construction is such
that those and only those truth-assignments to the variables which win the game G3
for W (B) 1lead the gueens of W (B} to win the generalized chess game from the
constructed position.

Our basic structure is the Boolean controller. Figure 1 {2} illustrates a
W (B} Boolean controller for a variable x € X (y € Y} . White circles are WP's

(W pawns), black circles BP's (B pawns), white squares WB's (W bishops), black

squares BB's (B bishops), and WR, BR, WQ, BQ stand for W rook, B rook, W queen,

B queen, respectively. IFT WR is at its south position in the WR-channel, as in

Figure 1, also called x-position, then the value of x is 1 . If WR is at the

north position of the WR-channel, dencted by WR in Figure 1, also called X-position,
then the value of x is 0 . A similar convention is adopted for Figure 2 which is
indicated only schematically because a B Boolean Controller (BBC) is obtained from a
W Boolean Controller (WBC) by an interchange CH e CZj s X<y, X+=sy and
W+ B throughout, followed by a 180® rotation. (Here and below, C]i (CZj) denotes
a typical clause of W-LOSE (B-LOSE).)

There is one W (B) Boolean Contreller for each x € X (y € Y) . In normal play,
W (B) moves his WR (BR) between the x-position and the X-position (y- and y-position)
in any W {(B) Boolean Controller until the game Gy will have been decided. If
W (B) does not abide by these rules, then his opponent can win via the B (W) Normal
Clock {NC} or the B (W) Rapid Clock (RC) mechanisms detailed bhelow.

A global view of the construction is shown in Figure 3. Let k be the largest
nuymber of literals in any "And-Clause” in W~LOSE and B-LOSE. Let C}i in W-LOSE be
an And-Clause consisting of 2 Titerals for some 1 < & < k € 12 . Suppose that
C]i =1 after a move of W. Now CH =1 if and only if there are & B queens which
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can reach C]i—channeT intersections not under attack in t=8 moves each: two
moves in the WBC (Figure 1) or BBC (Figure 2), one move for reaching the W Switch
(Figure 4), four meves in the W Switch and one last move for reaching the C]i'
channel. These 2 B queens now proceed down this channel, where 2-1 of them are
captured at the W Al}gﬁ‘(Figure 5), and the Tone survivor passes through a W delay-
1ine from where it emerges into the B Coup De Grace (CDG)-channel to checkmate the
W king (WK) (Figure 6).

The W (B} Switch (Figure 4) is designed to let a single B (W) queen pass from a
W (B) Boolean Controller to the C]i (Czj)wchanne1s, When a BQ comes down a WBC or a
BBC to an as yet untraversed W Switch, it captures the WP on the longer diagonal path
and then proceeds down unperturbed to the Cli-channe]s. If, however, a BQ attempts
to pass the W Switch in the opposite direction, whether previously traversed or un-
traversed, then, on reaching the northeast corner of the longer diagonal path, the
WP just underneath the captured WP goes north by one square and thus opens up a line
of more than k WB's effectively covering the shorter diagonal path of the switch,
making it impassable.

The crossing of Clause-channels with a Clock-channel and two Literal-channels
can be observed from the western part of Figure 5. If ¥y € C]] , V& C]Z say, then
a BQ coming down the y-channel can stop unperturbed at the intersection — called
island — with the C1]-channe1. But if it tries to come to rest at the intersection

with the C12—channe1, called through-intersection, then it is promptly captured by a
WP. The situation is reversed for a BQ coming down the y-channel (y ¢ Ci1 - Y€ C]Z)‘
On the other hand, a BQ coming down a Clock-channel cannot stop unattacked at any
crossing with a Cli-channe]; all its intersections with Clause-channels are through-
intersections.

We remark that if a literal is not used in W-LOSE {B-LOSE), its channel is
truncated prior to reaching the W (B) Switch (Figure 3).

Every channel-segment has length at least U = 2(k(t+1)+2) , and the shields
around each channel, including truncated ones, also have thickness at least U. The
reason for this will become clear later. (In the figures, some segments seem short
and some shields thin, which is the result of emphasizing the main features at the
expehse of the standard ones. But it should be kept in mind that the true length of
segments and thickness of shields is at least U throughout.)

3. THE WINNING SCENARIO

As was mentioned above, if CH contains & Tliterals and CH =1 following a
move of W, then there are 2 BQ's each of which can reach the C]i—channe1 in
t =8 moves. The strategy of B is to first move all & BQ's into the Cli—channel
and then to move each of them as far down the C]i~channe1 towards the B CDG-channel
as W permits. The first BQ to pass has to capture the WP located at the W Altar
which is backed up by a Tine containing precisely £&-1 WB's (Figure 5). Thus W
will capture j of the BQ's for some 0 < j < & . Then the (j+1)-th BQ captures a
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W piece at the W Altar after 2t+j+! moves: each of the £ BQ's reguires t
moves to reach the C1i~channe1 and j+1 of them make one capture move each. After
the {j+1)-th BQ captures a W piece at the Altar, it spends (k-2)t moves ina W
delay-line consisting of (k-2)t WP's. Two additional moves are spent for reaching
and riding the B CDG-channel. Using this strategy, B thus requires
pt+j+l+(k-2)t+2 = kt+j+3 moves for checkmating the WK.

Following the departure of the first BG from its vantage point on some Boolean
Controller towards a C}i~channel, the WQ on the same Boolean Controller can enter
the W Clock-channel. Each Clock-channel contains a delay-line of kt-3 moves
(Figure 6). Since W also captures j BQ's in the C]i—channel and there are six
additional moves for entering and leaving the W Clock-channel and riding the ¥
CDG-channel, W can checkmate the BK {B king) after kt+j+3 moves. Thus B wins with
a margin of one move. Since j < £ <k , B can in fact checkmate the WK in at most
kK(t+1)+2 (= U/2) moves. Every other move of W, from among the limited moves avail-
able to him, is also doomed to failure. This is shown in the next section.

If, after W's move which made 611 =1, W switches his WR between the x
-position and the x -position on some WBC, thus possibly unsatisfying W-LOSE, B can
still select the values satisfying W-LOSE by using the B Detour Route (Figure 1}.
This requires an additional move of B, but since also W Tost one move in his extra
WR switching maneuver, the move balance between B and W is preserved, and B can still
win.

Now suppose that B starts to move BQ's towards some C}i—channeis before the game
G3 has been decided. We show that W will win if he activates a W Clock immediately
following the departure of the first BQ, and then captures BQ's in the C1i—channe1s
whenever possible, otherwise proceeding down the W Clock-channel.

Given this strategy of W, B's only chance to win is to transfer in some Cli"
channel at least £ BQ's if clause CIi comprises 2 literals, since this is the
only way a BQ can enter the B CDG-channel. The r-th BQ requires t; moves to reach
the CTi-channeT, where t;= t or t+l1. There are two cases:

(1) t;=:t for all r (1 <r < 2) . Since W-LOSE is still false, at least one
BQ must stop at a through-intersection. Then a WP captures it, foiling B's design.
Now W wins via its clock-mechanism after a possible engagement at the W Altar.

(i1} t;= t+1  for some r (which means that B uses the B Detour Route in some
WBCY. If B again stops at a through-intersection, the situation is as before. If
3 stops at islands only, then B spends 2 moves in the BQ-WB battles at the W Altar,

{k-2)t moves in the channel delay-Tine and two moves for reaching and riding the B
2
CDG-channel. Thus B requires at least 7§ t;+<(k—2)t+£+2 > L4+ (K-2)tHR+2 = KE+0+3
r=1
moves to checkmate the WK. Now W spends ¢-1 moves in capturing BQ's and kt+3
moves in the W Clock and W CDG-channels. Thus W can checkmate the BK in kt+e+2

moves, less moves than B, and so W wins.
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4. "ILLEGAL" MOVES

The above analysis — except the last part — was based on the assumption that
the players do in fact simulate G;. We call a move "i1legal™ if it is a legal move
in generalized chess, but is either not part of the simulation of G3 altogether, or
is part but is taken at the wrong time for a proper simulation of G3. Below we con-
sider the nonobvious "illegal” moves.

I. The WBC. There are only six pieces that can move: WR, WQ, BQ, two BP's and
one WP (Figure 1).
A. Moves of WR.
(i) Suppose that while the game G3 is still undecided, WR leaves the
WR-channel from its normal x or X-position, going east or west. (This has the
bizarre effect of making both x=1 and x=1 as far as B-LOSE is concerned, but
leaving x unchanged in W-LOSE.)

If WR stops in the line of sight of BQ, then BQ captures WR. The timing is
such, as is easy to verify, that even if WR's move made B-LOSE true, B can now win
via the B RC-channel except that if WG moved to the x-position after BQ captured WR,
then BQ has to back up to the B NC/RC-channel intersection and win via the B NC-
channel. If WR stops elsewhere, then BQ goes directly to the WR/B RC-channel inter-
section and wins via the B RC-channel.

(i1} Suppose that while G5 is sti11 undecided, WR stops within the WR-
channel at some location other than the x or x-position. (This has the effect of
making x=1 and %=1 in both B-LOSE and W-LOSE.} If this location is the inter-
section with the B RC-channel, then BQ captures WR and wins again via the B RC-
channel, Otherwise a BP captures WR., If now W moves his queen to the x-position,
then BQ goes to the B NC/RC-channel intersection and then wins via the B NC-channel
(even if B-LOSE is now true). Otherwise BQ can again win via the B RC-channel.

B, Moves of WQ.

(1) Suppose that while G5 is still undecided, WQ moves northwest to
the intersection with the W Clock-channel. Then BQ will capture WQ, since otherwise
W can win via its Clock mechanism. Even if W now makes B-LOSE true, B can win by
moving southeast to the intersection with the B NC-channel and then proceeding down
this channel.

(i1) Suppose that WQ moves as in (i) in some WBC R, but the move is
made after W-LOSE has been made true previously by W. If BQ in R is required for
winning, B moves it out towards the C}i-channels. Otherwise B continues with his
normal winning strategy, ignoring W's move altogether.

{(ii1) Suppose that while G3 is still undecided, WQ moves down vertically.
1f it comes to rest at the B NC/RC-channel intersection, B will capture it with his
BQ which will subsequently proceed down the B NC-channel and win. Otherwise WQ is
captured by a BP. Even if W now makes B-LOSE true, B can win with his BQ via the
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B NC-channel.
(iv) Suppose that WQ moves as in (ii1), but the move is made after
W-LOSE has previously been made true by W. Then B's strategy is essentially the

same as in (i), so we omit it.

(v) Once BQ has left a WBC, WQ can neither pass through the Literal-
channels in W-LOSE nor through the B Clock-channel, because of the BP's defending
the channel corners. An attempt by WQ to advance in parallel to some of these
channel segments from the outside by gnawing its way along the shielding WP's and
then slipping in at a suitable corner, is simply ignored by B, since the length of
each channel-segment is at least U, which is about twice as long as it takes B to
win, Also WQ cannot skip from channel to channel by penetrating through channel-
shields, since these have thickness at least U.

(vi) Suppose that after W-LOSE has previously been made true by W, and
WR is in the x-position, WQ moves to the x-position in some WBC R. If BQ in R is
required for winning, B will now move it towards 'the C1i—channe1s via the B Detour
Route. Otherwise B continues with his normal winning strategy.

If under the same assumption WR is in the x-position and WQ advances towards
the X-position by capturing the BP just southwest of the X-position, then provided
BQ of R is required for winning, BQ moves out towards the C]i—channe1s via the x-
channel. If BQ is not required for winning, W's move is ignored as before.

C. Moves of BQ. The moves {Bi)-(Bv) have obvious counterparts for BQ in a
WBC and move (Bvi) has a counterpart in a BBC, so we omit the details. Only in the
counterpart of (Bii) a slightly new situation may arise: Suppose that BQ moved to
the B NC/RC-channel intersection and WQ then advanced towards the x-position — since
WQ is required for winning — first capturing the BP just southwest of the x-position.
If BQ now moves to the original position of WQ, then WQ captures BQ and then continues
down the x-channel towards the Czj—channels. Otherwise WQ continues directly down
the x-channel. A similar situation can arise in the counterpart of (Biv), which W
handles also in the way just described.

If, before G3 has been decided, BQ advances to its first station towards an

x {x)-channel while WR is in the X (x)-position, then BQ is captured by WR. On its
next move, WQ will enter the W Clock-channel in the WBC in which the BQ was captured,
and win via its Clock-mechanism. If BQ makes a move of this type after B made B-LOSE
true, it is ignored by W, who continues with his normal winning strategy.

D. Moves of the Pawns.

(i) Suppose that while Gy has not yet been decided, the BP just west
of the B NC/RC-channel intersection or the BP two squares north of it, moves south.
Then WQ goes northwest to a point one square southeast of the W Clock intersection
{call this square K). W can now win via his Clock since B loses one move on account
of blocking the entrance to the B Clock-channel with his own BP.
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{11} Suppose that while G has not yet been decided, the WP just south
of K moves north onto K. Then B moves southeast to the middle of the first leg of
the B RC-channel, from where it can win by going west to the B NC-channel.

11. Preventing Backlash. Suppose that B, either before 63 has been decided or

after it has been decided in W's favor, assembles a squadron of BQ's in the C¥i'
channels in an attempt to break back into some B Clock-channels or into some Literal-
channels, with the aim of reaching the Czj—channeis via some Boolean Controliers.

If B succeeds in capturing even one of the WQ's needed for a normal winning strategy
of W, the game's outcome is not clear anymore.

Now W commences executing his normal winning strategy at the Tatest one move
after the first BQ is moved towards the C]i~channe1s. Assume first that B attempts
to break back via some B Clock-channels. B needs t+] moves to place a BQ at a
C]i/B Clock-channel intersection, which is a through-intersection. Then W will cap-
ture BQ there. After B moved k+1 BQ's to such through-intersections and W cap-
tured them {the first with a WP, subsequent ones with WB's, see Figure 5), B spent
{(k+1){t+1) moves; and W spent (k+1)t moves pursuing his normal winning strategy and
k+1 moves capturing BQ's at their prospective backlash points. Since shields have
thickness at Teast U > k+1 , W has a sufficient supply of bishops to do the latter.
(Note that in Figure 5 the true distance between the three vertical channels is much
larger than shown.) It is thus seen that in at most k-t+2 < 6 additional moves,

W wins. If B attempts to break back via some Literai-channels, then it again takes
t+1 moves to place a BQ at a C]i/LiteraT—channe1 intersection, which may be an
island. At least three additional moves are made by BQ before it is captured by a
WB in a W Switch. Thus a fortiori W wins by pursuing his normal winning strategy
and capturing {at most k+1 } BQ's which try to break back.

5. POLYNOMIALITY OF TRANSFORMATION

Recall our earlier notation: p {q) is the number of And-Clauses in W-LOSE
(B-LOSE) and m = |[X| + |Y][ . The subscripts i of the literals x; and y; are
encoded in binary. Therefore the Tength of W-LOSE {B-LOSE) has magnitude about
12 plogp (12 g log q) , and the input size is thus O((p+q)log(pq)) . Clearly
m < 12(ptq) .

For each variable our construction requires a constant amount of chess-pieces:
The Boolean Controller, four Literal-channels, two Clock-channels and four Switches
associated with a variable require a constant amount of chess-pieces since each
channel-segment has length O(k{t+1)) which is a constant, and the shields around
each channel also have thickness O{k(t+1)) . Thus the sequence of m Boolean Con-
trollers oriented in a general northwest to southeast direction (Figure 3}, has
length 0(m) = O{p+q) . Therefore also the Clause-channels and CDG-channels have
Tength O(ptq) each. The total thickness of the Clause-channels with their shields
is also O(p+q) . It follows that the construction can be realized on a square
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board of side n = O(p+q) , and so the transformation is polynomial.

Note. [f we provide Switches in the Clock-channels in addition to those in the
Literal-channels, we can replace the bishop shields around the Clause-channels by
pawn shields. The Switches themselves can be redesigned so that they can operate
without bishops. If, in addition, we back up the Altars by gueens instead of
bishops, it seems possible to avoid using bishops altogether. This leads to the
possibility that nxn German checkers ("Dame") can be proved Exptime-complete by a
method similar to the above proof. (In German checkers a piece reaching the opposite
side of the board essentially becomes a queen rather than a king. We are told that
this is the rule also for the version of the game as played in the USSR.) Of course
also other board-games (such as nxn Go ) may be Exptime-complete,
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