
Introduction
2D Range trees

Degenerate cases
Range queries

Database queries

A database query may ask for
all employees with age
between a1 and a2, and salary
between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500
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Faster queries

Can we achieve O(logn [+k]) query time?
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Example 1D range query

A 1-dimensional range query with [25, 90]
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Example 1D range query

A 1-dimensional range query with [61, 90]
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Examining 1D range queries

For any 1D range query, we can identify O(logn) nodes that
together represent all answers to a 1D range query
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Toward 2D range queries

For any 2d range query, we can identify O(logn) nodes that
together represent all points that have a correct first
coordinate
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Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)
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Introduction
2D Range trees
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Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

data structure
for searching on
y-coordinate
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Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

(3, 8)

(1, 5)

(4, 2)

(5, 9)

(6, 7)

(8, 1)

(7, 3)

(9, 4)
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2D range trees

Every internal node stores a whole tree in an associated
structure, on y-coordinate

Question: How much storage does this take?
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Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n logn) size so
that any 2D range query can be answered in O(log2 n+ k)
time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(
√

n+ k) time
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Efficiency

n logn log2 n
√

n

16 4 16 4
64 6 36 8

256 8 64 16
1024 10 100 32
4096 12 144 64

16384 14 196 128
65536 16 256 256

1M 20 400 1K
16M 24 576 4K
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Higher dimensional range trees

A d-dimensional range tree has
a main tree which is a
one-dimensional balanced
binary search tree on the first
coordinate, where every node
has a pointer to an associated
structure that is a
(d−1)-dimensional range tree
on the other coordinates
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Improving the query time

The idea illustrated best by a different query problem:

Suppose that we have a collection of sets S1, . . . ,Sm, where
|S1|= n and where Si+1 ⊆ Si

We want a data structure that can report for a query
number x, the smallest value ≥ x in all sets S1, . . . ,Sm
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4
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1 2 3 5 8 13 21 34 55
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

[6,35]

S1

S2

S3

S4
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Fractional cascading
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Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)
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(58, 59)

(67, 89)

(93, 70)
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Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099
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Fractional cascading

(2, 19)

(5, 80)

(7, 10)
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(12, 3)
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[4, 58]× [19, 65]
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Result

Theorem: A set of n points in d-dimensional space can be
preprocessed in O(n logd−1 n) time into a data structure of
O(n logd−1 n) size so that any d-dimensional range query can
be answered in O(logd−1 n+ k) time, where k is the number of
answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(n1−1/d + k) time
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