
Introduction
2D Range trees

Degenerate cases
Range queries

Database queries

A database query may ask for
all employees with age
between a1 and a2, and salary
between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500

Computational Geometry Lecture 8: Range trees2

Introduction
2D Range trees

Degenerate cases
Range queries

Faster queries

Can we achieve O(logn [+k]) query time?

Computational Geometry Lecture 8: Range trees5

Introduction
2D Range trees

Degenerate cases
Range queries

Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

Computational Geometry Lecture 8: Range trees12

Introduction
2D Range trees

Degenerate cases
Range queries

Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node

Computational Geometry Lecture 8: Range trees13

Introduction
2D Range trees

Degenerate cases
Range queries

Examining 1D range queries

For any 1D range query, we can identify O(logn) nodes that
together represent all answers to a 1D range query

Computational Geometry Lecture 8: Range trees15

Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

For any 2d range query, we can identify O(logn) nodes that
together represent all points that have a correct first
coordinate

Computational Geometry Lecture 8: Range trees16

Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

Computational Geometry Lecture 8: Range trees17

Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

Computational Geometry Lecture 8: Range trees18

Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

data structure
for searching on
y-coordinate

Computational Geometry Lecture 8: Range trees19

Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

(3, 8)

(1, 5)

(4, 2)

(5, 9)

(6, 7)

(8, 1)

(7, 3)

(9, 4)

Computational Geometry Lecture 8: Range trees20

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range trees

Every internal node stores a whole tree in an associated
structure, on y-coordinate

Question: How much storage does this take?

Computational Geometry Lecture 8: Range trees21

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n logn) size so
that any 2D range query can be answered in O(log2 n+ k)
time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(
√

n+ k) time

Computational Geometry Lecture 8: Range trees35

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Efficiency

n logn log2 n
√

n

16 4 16 4
64 6 36 8

256 8 64 16
1024 10 100 32
4096 12 144 64

16384 14 196 128
65536 16 256 256

1M 20 400 1K
16M 24 576 4K

Computational Geometry Lecture 8: Range trees36

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Higher dimensional range trees

A d-dimensional range tree has
a main tree which is a
one-dimensional balanced
binary search tree on the first
coordinate, where every node
has a pointer to an associated
structure that is a
(d−1)-dimensional range tree
on the other coordinates

Computational Geometry Lecture 8: Range trees38

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

The idea illustrated best by a different query problem:

Suppose that we have a collection of sets S1, . . . ,Sm, where
|S1|= n and where Si+1 ⊆ Si

We want a data structure that can report for a query
number x, the smallest value ≥ x in all sets S1, . . . ,Sm

Computational Geometry Lecture 8: Range trees44

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

Computational Geometry Lecture 8: Range trees45

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

Computational Geometry Lecture 8: Range trees46

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

[6,35]

S1

S2

S3

S4

Computational Geometry Lecture 8: Range trees52

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

Computational Geometry Lecture 8: Range trees55

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932

Computational Geometry Lecture 8: Range trees56

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

Computational Geometry Lecture 8: Range trees57

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932

[4, 58]× [19, 65]

Computational Geometry Lecture 8: Range trees58

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

Computational Geometry Lecture 8: Range trees59

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

Computational Geometry Lecture 8: Range trees60

Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Result

Theorem: A set of n points in d-dimensional space can be
preprocessed in O(n logd−1 n) time into a data structure of
O(n logd−1 n) size so that any d-dimensional range query can
be answered in O(logd−1 n+ k) time, where k is the number of
answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(n1−1/d + k) time

Computational Geometry Lecture 8: Range trees62

