
I/O models

How computation works:
• Data is transferred in blocks between RAM and disk.
• The # of block transfers dominates the running time.

Goal: Minimize # of block transfers
• Performance bounds are parameterized by

block size B, memory size M, data size N.

Modeling I/O Using the Disk Access Model

DiskRAM

B

B

M

3

[Aggarwal+Vitter ’88]

I/O models

Cache-oblivious analysis:
• Parameters B, M are unknown to the algorithm or coder.
• Performance bounds are parameterized by block size B,

memory size M, data size N.

Goal (as before): Minimize # of block transfer

Cache-Oblivious Analysis

DiskRAM

B=??

B=??

M=??

18

[Frigo, Leiserson, Prokop, Ramachandran ’99]

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

9

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

10

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

11

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

12

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

14

Don’t Thrash: How to Cache Your Hash in Flash

A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B

Inserts + deletes:
• Send insert/delete messages down from the root and store

them in buffers.
• When a buffer fills up, flush.

15

Don’t Thrash: How to Cache Your Hash in Flash

Analysis of writes
An insert/delete costs amortized O((log N)/B) per
insert or delete

• A buffer flush costs O(1) & sends B elements down one
level

• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

16

Don’t Thrash: How to Cache Your Hash in Flash

Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N)
• This is the tree height.

Inserts cost O((logBN)/√B)
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

19

Don’t Thrash: How to Cache Your Hash in Flash

Write optimization. ✔ What’s missing?

Optimal read-write tradeoff: Easy
Full featured: Hard

• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special cases of sequential inserts

and bulk loads
• Compression
• Backup

25

Log Structured Merge Trees

Log structured merge trees are write-optimized data
structures developed in the 90s.

Over the past 5 years, LSM trees have become
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase,
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosql-database.org lists 122 NoSQL
databases. Many of them are LSM trees.

2

[O'Neil, Cheng,
Gawlick, O'Neil 96]

http://nosql-database.org
http://nosql-database.org

Log Structured Merge Tree

An LSM tree is a cascade of B-trees.
Each tree Tj has a target size |Tj | .
The target sizes are exponentially increasing.
Typically, target size |Tj+1| = 10 |Tj |.

4

[O'Neil, Cheng,
Gawlick, O'Neil 96]

T0 T1 T2 T3 T4

LSM Tree Operations

Point queries:

5

T0 T1 T2 T3 T4

LSM Tree Operations

Point queries:

Range queries:

5

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

LSM Tree Operations

Insertions:
• Always insert element into the smallest B-tree T0.

• When a B-tree Tj fills up, flush into Tj+1 .

6

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert

flush

LSM Tree Operations

Deletes are like inserts:
• Instead of deleting an

element directly, insert
tombstones.

• A tombstone knocks out a
“real” element when it lands
in the same tree.

7

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert tombstone
 messages

Static-to-Dynamic Transformation
An LSM Tree is an example of a “static-to-
dynamic” transformation .

• An LSM tree can be built out of static B-trees.
• When T3 flushes into T4, T4 is rebuilt from scratch.

8

[Bentley, Saxe ’80]

T0 T1 T2 T3 T4

flush

Samples from LSM Tradeoff Curve

sizes grow by B
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O

✓
logN

B

◆
sizes double

(ɛ=0)

O

✓
log1+B" N

B1�"

◆
O
�
(logB N)(log1+B" N

�
)

point query

tradeoff
(function of ɛ)

insert

O ((logB N)(logN))

O ((logB N)(logB N))

O ((logB N)(logB N))

13

sizes grow by B1/2

(ɛ=1/2)

How to improve LSM-tree point queries?
Looking in all those trees is expensive, but can
be improved by

• caching,
• Bloom filters, and
• fractional cascading.

14

T0 T1 T2 T3 T4

Searching one tree helps in the next
Looking up c, in Ti we know it’s between b, and e.

18

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

1

Showing only the bottom level of each B-tree.

Remove redundant forwarding pointers
We need only one forwarding pointer for each block
in the next tree. Remove the redundant ones.

20

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

3

Ghost pointers
We need a forwarding pointer for every block in the
next tree, even if there are no corresponding
pointers in this tree. Add ghosts.

21

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

ghosts

h m

4

LSM tree + forward + ghost = fast queries
With forward pointers and ghosts, LSM trees require
only one I/O per tree, and point queries cost only
 .

22

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

ghosts

h m

4

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

O(logR N)

LSM tree + forward + ghost = COLA
This data structure no longer uses the internal nodes
of the B-trees, and each of the trees can be
implemented by an array.

23

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

Ti+ 1

Ti

b e v w

m n p qh i j k t u y za c d f

ghosts

h m

5

Text

