Modeling 1/0 Using the Disk Access Model

How computation works:
e Data is transferred in blocks between RAM and disk.
e The # of block transfers dominates the running time.

Goal: Minimize # of block transfers

¢ Performance bounds are parameterized by
block size B, memory size M, data size N.
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Cache-0Oblivious Analysis

Cache-oblivious analysis:
e Parameters B, M are unknown to the algorithm or coder.

¢ Performance bounds are parameterized by block size B,
memory size M, data size N.

Goal (as before): Minimize # of block transfer
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[Frigo, Leiserson, Prokop, Ramachandran ’99]
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Write-optimized data structures performance

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

f B=1024, then insert speedup is B/logB=100.
Hardware trends mean bigger B, bigger speedup.
_ess than 1 /O per insert.
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Optimal SearCh-lﬂsert TradeOﬂ: [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff 0O (10g1+Be N) O (10g1+B€ N)
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| Ox-100x faster inserts
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|||UStrat|Oﬂ Of Optlmal Tl’adeOﬂ: [Brodal, Fagerberg 03]
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A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.




A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.




A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B
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Inserts + deletes:

e Send insert/delete messages down from the root and store
them in buffers.

e \When a buffer fills up, flush.




Analysis of writes

An insert/delete costs amortized O((log N)/B) per
Insert or delete

e A buffer flush costs O(1) & sends B elements down one
level

e |t costs O(1/B) to send element down one level of the tree.
e There are O(log N) levels in a tree.
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Obtaining optimal point queries + very fast inserts

Point queries cost O(log,s N)= O(logs N)
® This is the tree height.

Inserts cost O((logsN)/\/B)
e Each flush cost O(1) I/Os and flushes /B elements.




Write optimization. ¥/ What’s missing”

Optimal read-write tradeoff: Easy

Full featured: Hard

e \/ariable-sized rows

e Concurrency-control mechanisms

e Multithreading

¢ Transactions, logging, ACID-compliant crash recovery

e Optimizations for the special cases of sequential inserts
and bulk loads

e Compression
e Backup




[O'Neil, Cheng,

Log Structured Merge Trees  Gawick, O'Neil g6

Log structured merge trees are write-optimized data
structures developed in the 90s.

Over the past 5 years, LSM trees have become
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase,
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosgl-database.org lists 122 NoSQL
databases. Many of them are LSM trees.



http://nosql-database.org
http://nosql-database.org

[O'Neil, Cheng,

Log Structured Merge Tree  cawick oNeilgel

An LSM tree is a cascade of B-trees.
Each tree T; has a target size |T;].
The target sizes are exponentially increasing.

Typically, target size |Tj.1| = 10 |T;|.




LSM Tree Operations

Point queries:




LSM Tree Operations

Point queries:

xalh/k

To T T> T3

Range queries:

AAAA

To Ti T>




LSM Tree Operations

Insertions:
e Always insert element into the smallest B-tree To.

insert \ /\
L

To T1 T T3

flush

e When a B-tree T; fills up, flush into Tis1 . /\

AN L A\ L 3 y:

To T1 T Ts Ta




LSM Tree Operations

Deletes are like inserts:
insert tombstone

¢ |[nstead of deleting an messages
element directly, insert ‘
tombstones.

e A tombstone knocks out a
“real” element when it lands Te Th T2
IN the same tree.




Static-to-Dynamic Transformation

An LSM Tree is an example of a “static-to-
dynamic” transformation [Bentiey, Saxe ’s0].

e An LSM tree can be built out of static B-trees.
¢ \When T3 flushes into Ta, T4 IS rebuilt from scratch.




Samples from LSM Tradeoff Curve

insert point query

tradeoff O logy g N
(function of €) Bl-¢

) O ((logg N)(logi45- N))

sizes grow by B

(e=1) O (logg N) O ((logg N)(logg N))

sizes grow by B!/2 O ((logg N)(logg N))
(€=1/2)

sizes double

phing O ((1ogs N)(10g N))




How to improve LSM-tree point queries”

Looking in all those trees is expensive, but can
be improved by

® caching,
¢ Bloom filters, and
e fractional cascading.

{AA}/N/&




Searching one tree helps in the next
Looking up ¢, in Ti we know Iit’s between b, and e.

Showing only the bottom level of each B-tree.




Remove redundant forwarding pointers

We need only one forwarding pointer for each block
In the next tree. Remove the redundant ones.




Ghost pointers

We need a forwarding pointer for every block in the
next tree, even if there are no corresponding
pointers In this tree. Add ghosts.




LSM tree + forward + ghost = fast queries

With forward pointers and ghosts, LSM trees require
only one I/O per tree, and point queries cost only

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]




LSM tree + forward + ghost = COLA

This data structure no longer uses the internal nodes
of the B-trees, and each of the trees can be
implemented by an array.

behm vw Text

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson O7]



