Modeling 1/0 Using the Disk Access Model

How computation works:
e Data is transferred in blocks between RAM and disk.
e The # of block transfers dominates the running time.

Goal: Minimize # of block transfers

¢ Performance bounds are parameterized by
block size B, memory size M, data size N.

-<

—_—

B

— M—

B

[Aggarwal+Vitter ’88]

I/O models

Cache-0Oblivious Analysis

Cache-oblivious analysis:
e Parameters B, M are unknown to the algorithm or coder.

¢ Performance bounds are parameterized by block size B,
memory size M, data size N.

Goal (as before): Minimize # of block transfer

- B=2?7 4

—_—

—
-‘
—_—

- B=77

[Frigo, Leiserson, Prokop, Ramachandran ’99]

I/O models

Write-optimized data structures performance

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

f B=1024, then insert speedup is B/logB=100.
Hardware trends mean bigger B, bigger speedup.
_ess than 1 /O per insert.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Optimal SearCh-lﬂsert TradeOﬂ: [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff 0O (10g1+Be N) O (10g1+B€ N)
(function of €=0...1) Bl—-c

B(;tzr’le)e O (logg N) O (logg N)

e=1/2 O(logB N)

O (log N)

| Ox-100x faster inserts

llustration of Optimal Tradeoft s, Fagererg s

Optimal Curve

(7))
9
|
()
&
)
=
O
(a8

Inserts

|||UStrat|Oﬂ Of Optlmal Tl’adeOﬂ: [Brodal, Fagerberg 03]

Target of opportunity

B-tree w
Optimal Curve
Insertions improve by 7\

| 0x-100x with
almost no loss of point-
query performance

(7))
9
|
()
&
)
=
O
(a8

Inserts

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

@

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

QO

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

Q00

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

Q000

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

O
Q000

@) @

00 Q00) CI'ED CI'D

Inserts + deletes:

¢ Send insert/delete messages down from the root and store
them in buffers.

¢ \WWhen a buffer fills up, flush.

A simple write-optimized structure

O(log N) queries and O((log N)/B) inserts:
¢ A balanced binary tree with buffers of size B

)

= NN

(@ 90) (0000

00 Q00) CI'ED CI'D

Inserts + deletes:

e Send insert/delete messages down from the root and store
them in buffers.

e \When a buffer fills up, flush.

Analysis of writes

An insert/delete costs amortized O((log N)/B) per
Insert or delete

e A buffer flush costs O(1) & sends B elements down one
level

e |t costs O(1/B) to send element down one level of the tree.
e There are O(log N) levels in a tree.

)

ZZ NN

(@ 90) (0000

00 Q00) CI'ED CI'D

Obtaining optimal point queries + very fast inserts

Point queries cost O(log,s N)= O(logs N)
® This is the tree height.

Inserts cost O((logsN)/\/B)
e Each flush cost O(1) I/Os and flushes /B elements.

Write optimization. ¥/ What’s missing”

Optimal read-write tradeoff: Easy

Full featured: Hard

e \/ariable-sized rows

e Concurrency-control mechanisms

e Multithreading

¢ Transactions, logging, ACID-compliant crash recovery

e Optimizations for the special cases of sequential inserts
and bulk loads

e Compression
e Backup

[O'Neil, Cheng,

Log Structured Merge Trees Gawick, O'Neil g6

Log structured merge trees are write-optimized data
structures developed in the 90s.

Over the past 5 years, LSM trees have become
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase,
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosgl-database.org lists 122 NoSQL
databases. Many of them are LSM trees.

http://nosql-database.org
http://nosql-database.org

[O'Neil, Cheng,

Log Structured Merge Tree cawick oNeilgel

An LSM tree is a cascade of B-trees.
Each tree T; has a target size |T;].
The target sizes are exponentially increasing.

Typically, target size |Tj.1| = 10 |T;|.

LSM Tree Operations

Point queries:

LSM Tree Operations

Point queries:

xalh/k

To T T> T3

Range queries:

AAAA

To Ti T>

LSM Tree Operations

Insertions:
e Always insert element into the smallest B-tree To.

insert \ /\
L

To T1 T T3

flush

e When a B-tree T; fills up, flush into Tis1 . /\

AN L A\ L 3 y:

To T1 T Ts Ta

LSM Tree Operations

Deletes are like inserts:
insert tombstone

¢ |[nstead of deleting an messages
element directly, insert ‘
tombstones.

e A tombstone knocks out a
“real” element when it lands Te Th T2
IN the same tree.

Static-to-Dynamic Transformation

An LSM Tree is an example of a “static-to-
dynamic” transformation [Bentiey, Saxe ’s0].

e An LSM tree can be built out of static B-trees.
¢ \When T3 flushes into Ta, T4 IS rebuilt from scratch.

Samples from LSM Tradeoff Curve

insert point query

tradeoff O logy g N
(function of €) Bl-¢

) O ((logg N)(logi45- N))

sizes grow by B

(e=1) O (logg N) O ((logg N)(logg N))

sizes grow by B!/2 O ((logg N)(logg N))
(€=1/2)

sizes double

phing O ((1ogs N)(10g N))

How to improve LSM-tree point queries”

Looking in all those trees is expensive, but can
be improved by

® caching,
¢ Bloom filters, and
e fractional cascading.

{AA}/N/&

Searching one tree helps in the next
Looking up ¢, in Ti we know Iit’s between b, and e.

Showing only the bottom level of each B-tree.

Remove redundant forwarding pointers

We need only one forwarding pointer for each block
In the next tree. Remove the redundant ones.

Ghost pointers

We need a forwarding pointer for every block in the
next tree, even if there are no corresponding
pointers In this tree. Add ghosts.

LSM tree + forward + ghost = fast queries

With forward pointers and ghosts, LSM trees require
only one I/O per tree, and point queries cost only

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

LSM tree + forward + ghost = COLA

This data structure no longer uses the internal nodes
of the B-trees, and each of the trees can be
implemented by an array.

behm vw Text

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson O7]

