
I/O models

How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The # of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

Modeling I/O Using the Disk Access Model

DiskRAM

B

B

M
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[Aggarwal+Vitter ’88]



I/O models

Cache-oblivious analysis:
• Parameters B, M are unknown to the algorithm or coder. 
• Performance bounds are parameterized by block size B, 

memory size M, data size N.

Goal (as before): Minimize # of block transfer

Cache-Oblivious Analysis

DiskRAM

B=??

B=??

M=??
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Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized 
structures

Insert/delete O(logBN)=O(       ) O(       )logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. 
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB. 
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http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
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Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:

• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 
• When a buffer fills up, flush. 

14
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Analysis of writes
An insert/delete costs amortized O((log N)/B) per 
insert or delete

• A buffer flush costs O(1) & sends B elements down one 
level

• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

16
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Obtaining optimal point queries +  very fast inserts

Point queries cost O(log√B N)= O(logB N) 
• This is the tree height.

Inserts cost O((logBN)/√B) 
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B
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Write optimization. ✔ What’s missing?

Optimal read-write tradeoff: Easy
Full featured: Hard

• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special cases of sequential inserts 

and bulk loads
• Compression
• Backup

25



   

Log Structured Merge Trees 

Log structured merge trees are write-optimized data 
structures developed in the 90s.

Over the past 5 years, LSM trees have become 
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase, 
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosql-database.org lists 122 NoSQL 
databases. Many of them are LSM trees.

2

[O'Neil, Cheng, 
Gawlick, O'Neil 96]

http://nosql-database.org
http://nosql-database.org


   

Log Structured Merge Tree 

An LSM tree is a cascade of B-trees. 
Each tree Tj has a target size |Tj | . 
The target sizes are exponentially increasing. 
Typically, target size |Tj+1| = 10 |Tj |. 
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[O'Neil, Cheng, 
Gawlick, O'Neil 96]
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LSM Tree Operations

Point queries:
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LSM Tree Operations

Point queries:

Range queries:
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LSM Tree Operations

Insertions:
• Always insert element into the smallest B-tree T0.

• When a B-tree Tj  fills up, flush into Tj+1 . 
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LSM Tree Operations

Deletes are like inserts:
• Instead of deleting an 

element directly, insert 
tombstones.

• A tombstone knocks out a 
“real” element when it lands 
in the same tree.

7
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Static-to-Dynamic Transformation
An LSM Tree is an example of a “static-to-
dynamic” transformation                     .

• An LSM tree can be built out of static B-trees.
• When T3 flushes into T4, T4 is rebuilt from scratch. 

8

[Bentley, Saxe ’80]
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Samples from LSM Tradeoff Curve
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sizes grow by B1/2

(ɛ=1/2)



   

How to improve LSM-tree point queries? 
Looking in all those trees is expensive, but can 
be improved by

• caching,
• Bloom filters, and
• fractional cascading.

14
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Searching one tree helps in the next 
Looking up c, in Ti we know it’s between b, and e.

18

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

1

Showing only the bottom level of each B-tree.



   

Remove redundant forwarding pointers 
We need only one forwarding pointer for each block 
in the next tree.  Remove the redundant ones.
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Ghost pointers 
We need a forwarding pointer for every block in the 
next tree, even if there are no corresponding 
pointers in this tree.  Add ghosts.
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LSM tree + forward + ghost = fast queries 
With forward pointers and ghosts, LSM trees require 
only one I/O per tree, and point queries cost only
                    .
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[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

O(logR N)



   

LSM tree + forward + ghost = COLA
This data structure no longer uses the internal nodes 
of the B-trees, and each of the trees can be 
implemented by an array.
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[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]
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