Lecture 10 Union-Find

The union-find data structure is motivated by Kruskal’s minimum spanning
tree algorithm (Algorithm 2.6), in which we needed two operations on disjoint
sets of vertices:

e determine whether vertices u and v are in the same set;
e form the union of disjoint sets A and B.

The data structure provides two operations from which the above two
operations can be implemented:

e find(v), which returns a canonical element of the set containing v. We
ask if 4 and v are in the same set by asking if find(u) = find(v).

e union(u, v), which merges the sets containing the canonical elements u
and v.

To implement these operations efficiently, we represent each set as a tree
with data elements at the vertices. Each element u has a pointer parent (u)
to its parent in the tree. The root serves as the canonical element of the set.

To effect a union(u,v), we combine the two trees with roots » and v by
making u a child of v or vice-versa. To do a find(u), we start at u and follow
parent pointers, traversing the path up to the root of the tree containing u,
which gives the canonical element.

To improve performance, we will use two heuristics:

48

LECTURE 10 UNION-FIND 49

® When merging two trees in a union, always make the root of the
smaller tree a child of the root of the larger. We maintain with each
vertex u the size of the subtree rooted at u, and update whenever we
do a union.

e After finding the root v of the tree containing u in a find(u), we
traverse the path from u to v one more time and change the parent
pointers of all vertices along the path to point directly to v. This
process is called path compression. It will pay off in subsequent find
operations, since we will be traversing shorter paths.

Let us start with some basic observations about these heuristics. Let o
be a sequence of m union and find operations starting with n singleton sets.
Consider the execution of o both with and without path compression. In either
case we combine two smaller sets to form a larger in each union operation.
Observe that the collection of sets at time ¢ is the same with or without path
compression, and the trees have the same roots, although the trees will in
general be shorter and bushier with path compression. Observe also that
becomes a descendant of v at time ¢ with path compression if and only if u
becomes a descendant of v at time ¢t without path compression. However,
without path compression, once u becomes a descendant of v, it remains a
descendant of v forever, but with path compression, it might later become a
non-descendant of v.

10.1 Ackermann’s Function

The two heuristics will allow a sequence of union and find operations to be
performed in O((m + n)a(n)) time, where a(n) is the inverse of Ackermann’s
function. Ackermann’s function is a famous function that is known for its
extremely rapid growth. Its inverse a(n) grows extremely slowly. The texts
[3, 100] give inequivalent definitions of Ackermann’s function, and in fact
there does not seem to be any general agreement on the definition of “the”
Ackermann’s function; but all these functions grow at roughly the same rate.
Here is yet another definition that grows at roughly the same rate:

Ao(z) = z+1
Apni(z) = Ai(2)

where Af is the i-fold composition of Ax with itself:

A} = Ago---0 4

or more accurately,

A} = the identity function

50 LECTURE 10 UNION-FIND

Az+1 - AkOA;;.

In other words, to compute Ax1(z), start with = and apply Ax z times. It is
not hard to show by induction that A is monotone in the sense that

r<y — Ax(z) < Anly)

and that for all z, z < Ax(x).
As k grows, these functions get extremely huge extremely fast. For x =0
or 1, the numbers Ai(z) are small. For z > 2,

Ao(z) = z+1

Ai(z) = Ap(x) = 2z
Ay(z) = Af(z) = 22° > 2°
Ay(z) = A5(2) 2 2 = 2ta

Ae) = 43@) > 21@1--1212-) = 211e

Y

T

For z = 2, the growth of Ax(2) as a function of k is beyond comprehension.
Already for k = 4, the value of A4(2) is larger than the number of atomic
particles in the known universe or the number of nanoseconds since the Big
Bang.

Ap(2) = 3
A(2) = 4
Ax(2) = 8
A3(2) 21 = 2048

2

A42) > 212048 = 2%
2048
We define a unary function that majorizes all the Ax (i.e., grows asymp-

totically faster than all of them):
A(k) = Ax(2)

and call it Ackermann’s function. This function grows asymptotically faster
than any primitive recursive function, since it can be shown that all primitive
recursive functions are bounded almost everywhere by one of the functions Ay.
The primitive recursive functions are those computed by a simple PASCAL-like
programming language over the natural numbers with for loops but no while

LECTURE 10 UNION-FIND 51

loops. The level k corresponds roughly to the depth of nesting of the for loops
[79].
The inverse of Ackermann’s function is

a(n) = the least k such that A(k) > n

which for all practical purposes is 4. We will show next time that with our
heuristics, any sequence of m union and find operations take at most O((m+
n)a(n)) time, which is not quite linear but might as well be for all practical
purposes. This result is due to Tarjan (see [100]). A corresponding lower
bound for pointer machines with no random access has also been established
(99, 87].

Lecture 11 Analysis of Union-Find

Recall from last time the heuristics:

e In a union, always merge the smaller tree into the larger.

e In a find, use path compression.

We made several elementary observations about these heuristics:
e the contents of the trees are the same with or without path compression,
e the roots of the trees are the same with or without path compression;

e a vertex u becomes a descendant of v at time ¢ with path compression if
and only if it does so without path compression. With path compression,
however, u may at some later point become a non-descendant of v.

Recall also the definitions of the functions Ay and o

Arn(z) = Ai(2)
a(n) = least k such that Ap(2) > n (15)

and that a(n) < 4 for all practical values of n.

52

LECTURE 11 ANALYSIS OF UNION-FIND 53

11.1 Rank of a Node

As in the last lecture, let o be a sequence of m union and find instructions
starting with n singleton sets. Let 7;(u) denote the subtree rooted at u at
time ¢ in the execution of o without path compression, and define the rank of
u to be

rank (u) = 2+ height (T;,(u)), (16)

where height (T') is the height of T or length of the longest path in 7'. In other
words, we execute ¢ without path compression, then find the longest path
in the resulting tree below u. The rank of u is defined to be two more than
the length of this path. (Beware that our rank is two more than the rank as
defined in (3, 100]. This is for technical reasons; the 2’s in (15) and (16) are
related.)

As long as u has no parent, the height of Ti(u) can still increase, since
other trees can be merged into it; but once u becomes a child of another
vertex, then the tree rooted at u becomes fixed, since no trees will ever again
be merged into it. Also, without path compression, the height of a tree can
never decrease. It follows that if u ever becomes a descendant of v (with or
without path compression), say at time ¢, then for all s > ¢ the height of T,(u)
is less than the height of T,(v), therefore

rank (u) < rank (v) . (17)

The following lemma captures the intuition that if we always merge smaller
trees into larger, the trees will be relatively balanced.

Lemma 11.1
|Tt(u)| 2 2height (Te(u))) (18)

Proof. The proof is by induction on £, using the fact that we always
merge smaller trees into larger. For the basis, we have To(u) = {u}, thus
height (Ty(u)) = 0 and |Tp(u)| = 1, so (18) holds at time 0. If (18) holds
at time ¢ and the height of the tree does not increase in the next step, i.e.
if height (T;1(u)) = height (T}(u)), then (18) still holds at time ¢ + 1, since
Tesa(w)] > |Ty(w)|. Finally, if height (T;,1(u)) > height (Ty(u)), then the
instruction executed at time ¢ must be a union instruction that merges a tree
Ti(v) into T;(u), making v a child of u in Ti41(w). Then

height (T;(v)) = height (Tis1(v) = height (Thyy(u)) — 1.
By the induction hypothesis,

|Tt(,v)| > 2heightt(T¢(v))_

54 LECTURE 11 ANALYsIS OF UNION-FIND

Since we always merge smaller trees into larger,

T(w)] 2 |T:(v)l -

Therefore
Ten(@) = |T(w)l +|Te(v)]
> 2height (Tt (v)) + 2height (Te(v))
_ oheight (Te(v))+1
oheight (Te+1(u))
a
Lemma 11.2 The mazimum rank after executing o is at most [logn] + 2.
Proof. By Lemma 11.1,
n > |Tm(U)| > 2height (Tm (u)) > 2rank (u)-2 ,
S0
[logn]| > rank (u)—2.
0

Lemma 11.3
n
21'—2 :

Proof. If rank (u) = rank (v), then by (17) Tm(v) and Tm(v) are disjoint.
Thus

[{u | rank (u) = r}| <

n > | U Tml
rank (u)=r
=) (|Tw(u)l
rank (u)=r
> > 2'—2 by Lemma 11.1
rank (u)=r

= |{u|rank (u) =r}- 2.
O

Now consider the execution of o with path compression. We will focus
on the distance between u and parent (u) as measured by the difference in
their ranks, and how this distance increases due to path compression. Recall
that rank (u) is fixed and independent of time; however, rank (parent (u)) can

LECTURE 11 ANALYSIS OF UNION-FIND 55

change with time because the parent of u can change due to path compression.
By (17), this value can only increase.
Specifically, we consider the following conditions, one for each k:

rank (parent (u)) > Ai(rank (u)) . (19)
Define
6(u) = the greatest k for which (19) holds.

The value of 6(u) is time-dependent and can increase with time due to path
compression. Note that §(u) exists if u has a parent, since by (17),

rank (parent (u)) > rank(u)+1 = Ag(rank (u))

at the very least.
For n > 5, the maximum value 6(u) can take on is a(n) — 1, since if
o(u) = k,

llogn| + 2

rank (parent (v)) by Lemma 11.2
Ag(rank (u))

Ax(2) ,

IV IV IV V

therefore

a(n) > k.

11.2 Analysis

Each union operation requires constant time, thus the time for all union
instructions is O(m).

Each instruction find(u) takes time proportional to the length of the path
from u to v, where v is the root of the tree containing w. The path is traversed
twice, once to find v and then once again to change all the parent pointers
along the path to point to ». This amounts to constant time (say one time
unit) per vertex along the path. We charge the time unit associated such a
vertex x as follows:

e If z has an ancestor y on the path such that 0(y) = 6(x), then charge
z’s time unit to z itself.

® If has no such ancestor, then charge z’s time unit to the find instruc-
tion.

56 LECTURE 11 ANALYSIS OF UNION-FIND

Let us now tally separately the total number of time units apportioned to
the vertices and to the find instructions and show that in each case the total
is O((m + n)a(n)).

There are at most a(n) time units charged to each find instruction, at
most one for each of the a(n) possible values of §, since for each such value &
only the last vertex z on the path with §(z) = k gets its time unit charged to
the find instruction. Since there are at most m find instructions in all; the
total time charged to find instructions is O(ma(n)).

Let us now count all the charges to a particular vertex z over the course
of the entire computation. For such a charge occurring at time ¢, z must have
an ancestor y such that §(y) = 6(x) = k for some k. Then at time ¢,

rank (parent (z)) > Ag(rank (z))
rank (parent (y)) > Ag(rank (y)) .

Suppose that in fact
rank (parent (r)) > Aj(rank(z)), i>1.
Let v be the last vertex on the path. Then at time ¢,

rank (v)

IV

rank (parent (y))
Ap(rank (y))

Ay (rank (parent (z)))
Ay (Ai(rank (z)))
At (rank () ,

vV IV IV IV

and since v is the new parent of x at time £ + 1, we have at time ¢ + 1 that
rank (parent (z)) > Ait'(rank (z)) .
Thus at most rank (z) such charges can be made against x before

rank (parent (z)) > AR (rank (z))
= Agqi(rank (z)) ,

and at that point
6(xr) > k+1.

Thus after at most rank (z) such charges against z, §(z) increases by at least
one. Since 6(x) can increase only a(n) — 1 times, there can be at most
rank (r)a(n) such charges against z in all. By Lemma 11.3, there are at
most

r
21'—2

n
2'."—2

ra(n) = na(n)

LECTURE 11 ANALYSIS OF UNION-FIND 57

charges against vertices of rank r. Summing over all values of r, We obtain
the following bound on all charges to all vertices:

o r X r
Z na(n) 55 = na(n) - Z 53
r=0

r=0

= 8na(n) .
We have shown

Theorem 11.4 A sequence of m union and find operations starting with n
singleton sets takes time at most O((m + n)a(n)).

