SUFFIX TREES
©kuko 26.11.2023

1

Motivation

e given text T of length n, pattern P of length m; find occurrences of P in T
e trivial search: O(m x n); KMP: O(m) preprocessing of the pattern and O(n) search; practical

algorithms (Boyer-Moore)

e indexing: could we preprocess the text (instead of the pattern) and then search in time O(m)?
e longest common substring — open problem for many years, can be solved in O(n)?

e 2 easier problems:
e preprocess given texts 17, ..., Ty, so that for a given string P, we can find all texts which start

with P
— trivial: no preprocessing; search in O(m x d)
— sort, then binary search: O(m x log d)
— build a trie (radix tree), then go down the path P; the leaves in the subtree are all documents
starting with P
given 711, ...,Tqy, find the longest common prefix of any two texts T;, T}
— again, can be solved trivially, using sorting, or using a trie
in general, a trie is good for problems concerning prefixes

Sufix trees

e sufix tree — crazy idea: store all the suffizes of string T in a single trie
e every substring is a prefix of some suffix (let that sink in) so this trie will be good for problems

concerning substrings

e every node v corresponds to a substring spelled on the path from root to v

leaves in subtree v correspond occurrences of this substring

space: all suffixes have total length Q(n?) — that’s a problem (fig. left)

solution:

1) each path that doesn’t split is represented as a single edge (middle fig.)

we get a tree where all internal nodes have degree > 2, so the number of internal nodes <
number of leaves; i.e. O(n) nodes in total

2) for every edge, only store the indices of substrings in 7' (not whole substrings; fig. right)
this way, every edge takes O(1) space and we have just 1 copy of T; that’s O(n) space in total
sufix tree can also be constructed in O(n) time; how to do that — later

note that we can work with the succinct representation (right), but still imagine we conceptually
have the tree on the left; e.g. when going from root along path “ban”, we imagine there is a
node as in the left fig., while we represent it as imaginary node (eg,3), where eq is the edge
from root to 0 and “3” means go 3 chars down along this edge

e generalization: given a set of “documents” (texts) D = {T1, T3, ..., T4}, a sufix tree contains all

the suffixes of all the documents; e.g., think wikipedia =~ 6 M articles, tens of GBs of data

e it is sufficient to build a suffix tree for a single combined string Ty #To#T3F# - - - Ty#$, where

and $ are two special symbols, which do not occur in texts T1,...,Ty

e the only difference is that now, the leaves and edges need to specify the document they are

3

referring to

Example: S1 = aba$, S; = bbas:

Many Applications

e string search: does P occur in the text T? find the first/all occurrences

— just go down from the root along the path P; the leaves in the subtree are all the occurrences

— if we want the first occurrence, we precompute for each node a pointer to the leaf with the
smallest suffix number (or directly the position of the first occurrence) by traversing the
tree bottom-up (postorder) in O(n); value in node is min of its children

— if we want all occurrences, just search the entire subtree — if there are k occurrences, the
subtree has size O(k)

— precomputation: O(n), first occurrence: O(m), all occurrences: O(m + k), where k =
#occurrences

longest repeating substring in T

— a node with at least two leaves underneath represents a repeating substring (these are all
internal nodes; #leaves = #occurrences)

— for each node, we can precompute the ”string-depth(v)-the number of characters on the
path from the root to v (note that this is not the classical depth of a node — we do not
want the number of edges, but the length of the text on the edges)

— the result is the internal node with the maximum string-depth — we can find it in O(n)

longest common substring of Ty and Ts

— build the generalized suffix tree of T} and T%; color all the leaves with 2 colors — depending
on whether the suffix belongs to T; or 15

— find a node which has leaves of both colors underneath (we can precompute this info by a
bottom-up traversal)

the shortest unique substring / the most common substring of length > k — can be solved
similarly

mazximal repeats: we want substrings T'[i...i+ k] =T[j...j+ k], such that T[i — 1] £ T[j — 1]
and T[i+k+1] # T[j+k+1], i.e. they are maximal in the sense that they cannot be extended
to the left, nor to the right

— just mark for each leaf corresponding to the i-th suffix the character before it, i.e., T'[i — 1]

— find nodes which have at least two different characters in their two children subtrees
given two positions 4, j, find the longest common prefiz (LCP) of T[i...] and T[j..]

— trivially in O(k), f T[i...i+k—1]=T[j...7+k—1] but T[i + k] # T[j + k]

— in O(1), with precomputed LCA (lowest common ancestor)

e approximate search with < k mismatches

trivial in O(n x m) time (for every positions of a sliding window, count the number of
mismatches)

better: in O(n X k) (build suffix tree of T" and P and speed up the search by computing
LCP (via LCA): similar as before, we search at every position, but instead of comparing all
the characters, compute LCP and jump to the first mismatch in O(1); then compute LCP
of the rest and jump to the next mismatch until you reach the end of P or there are too
many mismatches)

e document counting problem: find the number of documents containing P

imagine that we color the leaves with different colors, according to the document in which
the given suffix is located; we have d colors and we want to know for each node, how many
different colors are under it

trivial in O(m + k) by searching the entire subtree (no precounting; k = #occurrences) —
can we do better?

for each vertex, we precompute the set of colors below it — precomputation time and space
O(n x d)

better: use LCA; trick: let’s fix some specific subtree; two nodes are in a subtree if and only
if their LCA is also in this subtree

so if there are e.g. r red leaves in a subtree, then r — 1 consecutive pairs will have LCA in
the given subtree

for each color, we compute the number of (occurrences minus 1); when we sum these up,
we get the number of all leaves minus 1 for each color in the tree; i.e. we can compute the
number of different colors in this roundabout way: we compute number of all leaves and
subtract number of (occurrences minus 1) for each color

for each color, let’s have the leaves of that color sorted from left to right

for each color, we successively go through the leaves of the given color; for every two
consecutive leaves, compute their LCA and add 1 to this node

then sum up all the values for every subtree (traverse the tree bottom-up and for each node,
add the sum of their children)

at the same time, count the number of leaves for each subtree and get the number of
different colors as #leaves minus #LCAs

this way, the precomputation can be done in O(n) time and space

e document listing problem: list all the documents containing P

trivially in O(m + k) by traversing the whole subtree under P — can we do better? what if
there are many documents?

define array A, s.t. A[{] =number of the preceding node with the same color

all the occurrences of P correspond to leaves of some subtree, which correspond to an
interval in array A (say Afi...Jj])

we want to list all colors in a subtree; we achieve this by finding the leftmost node of each
color in the interval; these are all the nodes such that their predecessor of the same color
is outside of [i...j], more precisely, < i

so the problem reduces to listing all positions k in interval [¢, j], such that A[k] < ¢

this can be done in time O(|output|) (i.e., we list the documents in time O(#documents)
instead of O(#occurrences) — note that each document can contain many many occurrences
of P)

we precompute RMQ for A; then for given interval [4,j], we find minimum and if the
minimum is < ¢, we return it and also recursively search left and right sides

e even more complicated variants were studied: see e.g.

https://users.dcc.uchile.cl/"gnavarro/ps/sodal2.pdf,

which solves the top-k document retrieval problem:

4

— there is a predefined measure of how relevant is document D for pattern P (this can be e.g.
some static rank of D, or it can depend on the number of occurrences of P in D, etc.)

— problem: given a pattern P and number k, find the top-k most relevant documents which
contain P

Summary

suffix tree is a trie (radix-tree) containing all the suffixes of a given string (generalized suffix
tree contains all suffixes of multiple strings)

e it takes O(n) space and can be constructed in O(n) time
e it is very useful in stringology because it reveals a lot of structure in substrings of a given string

and many string problems can be reduced to problems on trees
— <— position ¢ <— leaf ¢
— i-th suffix «+— path from root to leaf i
— substring [i..j] «— path from root down (towards leaf 7)
— occurrences of P «— all the leaves under path P
— all strings of length k in T <— cut the suffix tree at string-depth &
— document <— color of the leaf
— documents containing P <— different leaf colors under path P
— common prefix «— common subpath from root toward two nodes
— LCP of two substrings «— LCA of two nodes

