
Suffix trees
©kuko 26.11.2023

1 Motivation

• given text T of length n, pattern P of length m; find occurrences of P in T
• trivial search: O(m× n); KMP: O(m) preprocessing of the pattern and O(n) search; practical

algorithms (Boyer-Moore)
• indexing : could we preprocess the text (instead of the pattern) and then search in time O(m)?
• longest common substring – open problem for many years, can be solved in O(n)?

• 2 easier problems:
• preprocess given texts T1, . . . , Td, so that for a given string P , we can find all texts which start
with P
– trivial: no preprocessing; search in O(m× d)
– sort, then binary search: O(m× log d)
– build a trie (radix tree), then go down the path P ; the leaves in the subtree are all documents

starting with P
• given T1, . . . , Td, find the longest common prefix of any two texts Ti, Tj

– again, can be solved trivially, using sorting, or using a trie
• in general, a trie is good for problems concerning prefixes

2 Sufix trees

• sufix tree – crazy idea: store all the suffixes of string T in a single trie
• every substring is a prefix of some suffix (let that sink in) so this trie will be good for problems
concerning substrings

• every node v corresponds to a substring spelled on the path from root to v
• leaves in subtree v correspond occurrences of this substring

• space: all suffixes have total length Ω(n2) – that’s a problem (fig. left)
• solution:
• 1) each path that doesn’t split is represented as a single edge (middle fig.)
• we get a tree where all internal nodes have degree ≥ 2, so the number of internal nodes <
number of leaves; i.e. O(n) nodes in total

• 2) for every edge, only store the indices of substrings in T (not whole substrings; fig. right)
• this way, every edge takes O(1) space and we have just 1 copy of T ; that’s O(n) space in total
• sufix tree can also be constructed in O(n) time; how to do that – later
• note that we can work with the succinct representation (right), but still imagine we conceptually
have the tree on the left; e.g. when going from root along path “ban”, we imagine there is a
node as in the left fig., while we represent it as imaginary node (e0,3), where e0 is the edge
from root to 0 and “3” means go 3 chars down along this edge

1

• generalization: given a set of “documents”(texts) D = {T1, T2, . . . , Td}, a sufix tree contains all
the suffixes of all the documents; e.g., think wikipedia ≈ 6M articles, tens of GBs of data

• it is sufficient to build a suffix tree for a single combined string T1#T2#T3# · · ·Td#$, where
and $ are two special symbols, which do not occur in texts T1, . . . , Td

• the only difference is that now, the leaves and edges need to specify the document they are
referring to

3 Many Applications

• string search: does P occur in the text T? find the first/all occurrences
– just go down from the root along the path P ; the leaves in the subtree are all the occurrences
– if we want the first occurrence, we precompute for each node a pointer to the leaf with the
smallest suffix number (or directly the position of the first occurrence) by traversing the
tree bottom-up (postorder) in O(n); value in node is min of its children

– if we want all occurrences, just search the entire subtree – if there are k occurrences, the
subtree has size O(k)

– precomputation: O(n), first occurrence: O(m), all occurrences: O(m + k), where k =
#occurrences

• longest repeating substring in T
– a node with at least two leaves underneath represents a repeating substring (these are all
internal nodes; #leaves = #occurrences)

– for each node, we can precompute the ”string-depth(v)-the number of characters on the
path from the root to v (note that this is not the classical depth of a node – we do not
want the number of edges, but the length of the text on the edges)

– the result is the internal node with the maximum string-depth – we can find it in O(n)
• longest common substring of T1 and T2

– build the generalized suffix tree of T1 and T2; color all the leaves with 2 colors – depending
on whether the suffix belongs to T1 or T2

– find a node which has leaves of both colors underneath (we can precompute this info by a
bottom-up traversal)

• the shortest unique substring / the most common substring of length ≥ k – can be solved
similarly

• maximal repeats: we want substrings T [i . . . i+ k] = T [j . . . j+ k], such that T [i− 1] ̸= T [j− 1]
and T [i+k+1] ̸= T [j+k+1], i.e. they are maximal in the sense that they cannot be extended
to the left, nor to the right
– just mark for each leaf corresponding to the i-th suffix the character before it, i.e., T [i− 1]
– find nodes which have at least two different characters in their two children subtrees

• given two positions i, j, find the longest common prefix (LCP) of T [i . . .] and T [j . . .]
– trivially in O(k), if T [i . . . i+ k − 1] = T [j . . . j + k − 1] but T [i+ k] ̸= T [j + k]
– in O(1), with precomputed LCA (lowest common ancestor)

2

• approximate search with ≤ k mismatches
– trivial in O(n × m) time (for every positions of a sliding window, count the number of
mismatches)

– better: in O(n × k) (build suffix tree of T and P and speed up the search by computing
LCP (via LCA): similar as before, we search at every position, but instead of comparing all
the characters, compute LCP and jump to the first mismatch in O(1); then compute LCP
of the rest and jump to the next mismatch until you reach the end of P or there are too
many mismatches)

• document counting problem: find the number of documents containing P
– imagine that we color the leaves with different colors, according to the document in which
the given suffix is located; we have d colors and we want to know for each node, how many
different colors are under it

– trivial in O(m + k) by searching the entire subtree (no precounting; k = #occurrences) –
can we do better?

– for each vertex, we precompute the set of colors below it – precomputation time and space
O(n× d)

– better: use LCA; trick: let’s fix some specific subtree; two nodes are in a subtree if and only
if their LCA is also in this subtree

– so if there are e.g. r red leaves in a subtree, then r − 1 consecutive pairs will have LCA in
the given subtree

– for each color, we compute the number of (occurrences minus 1); when we sum these up,
we get the number of all leaves minus 1 for each color in the tree; i.e. we can compute the
number of different colors in this roundabout way: we compute number of all leaves and
subtract number of (occurrences minus 1) for each color

– for each color, let’s have the leaves of that color sorted from left to right
– for each color, we successively go through the leaves of the given color; for every two
consecutive leaves, compute their LCA and add 1 to this node

– then sum up all the values for every subtree (traverse the tree bottom-up and for each node,
add the sum of their children)

– at the same time, count the number of leaves for each subtree and get the number of
different colors as #leaves minus #LCAs

– this way, the precomputation can be done in O(n) time and space
• document listing problem: list all the documents containing P

– trivially in O(m+ k) by traversing the whole subtree under P – can we do better? what if
there are many documents?

– define array A, s.t. A[i] =number of the preceding node with the same color
– all the occurrences of P correspond to leaves of some subtree, which correspond to an
interval in array A (say A[i . . . j])

– we want to list all colors in a subtree; we achieve this by finding the leftmost node of each
color in the interval; these are all the nodes such that their predecessor of the same color
is outside of [i . . . j], more precisely, < i

– so the problem reduces to listing all positions k in interval [i, j], such that A[k] < i
– this can be done in time O(|output|) (i.e., we list the documents in time O(#documents)

instead of O(#occurrences) – note that each document can contain many many occurrences
of P)

– we precompute RMQ for A; then for given interval [i, j], we find minimum and if the
minimum is < i, we return it and also recursively search left and right sides

• even more complicated variants were studied: see e.g.

https://users.dcc.uchile.cl/~gnavarro/ps/soda12.pdf,

which solves the top-k document retrieval problem:

3

– there is a predefined measure of how relevant is document D for pattern P (this can be e.g.
some static rank of D, or it can depend on the number of occurrences of P in D, etc.)

– problem: given a pattern P and number k, find the top-k most relevant documents which
contain P

4 Summary

• suffix tree is a trie (radix-tree) containing all the suffixes of a given string (generalized suffix
tree contains all suffixes of multiple strings)

• it takes O(n) space and can be constructed in O(n) time
• it is very useful in stringology because it reveals a lot of structure in substrings of a given string
and many string problems can be reduced to problems on trees
– ←→ position i ←→ leaf i
– i-th suffix ←→ path from root to leaf i
– substring [i..j] ←→ path from root down (towards leaf i)
– occurrences of P ←→ all the leaves under path P
– all strings of length k in T ←→ cut the suffix tree at string-depth k
– document ←→ color of the leaf
– documents containing P ←→ different leaf colors under path P
– common prefix ←→ common subpath from root toward two nodes
– LCP of two substrings ←→ LCA of two nodes

4

