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Introduction

e suffix array (SA) is simply an array of suffixes sorted lexicographically
e motivation: suffix trees (ST) take up an awful lot of memory — even if we’re very very careful,

10-20B/character (just a single pointer takes 8 bytes!)

suffix arrays need 1 int/character; if we have text up to 4 billion characters, we can use a 32-bit
int, which is 4B/character + the text itself

take for example the human genome, which is a string of about 3 billion characters from the
alphabet A, C, G, T

the string itself therefore takes about 3GB (if we use 1B/character), or 750MB if we use packed
representation with 2bits/character

the suffix tree will occupy 30-60GB or more and the suffix array about 12GB (+the string
itself +0.75GB)

and that’s just the memory of the resulting structure, where we don’t count the memory used
temporarily during construction

when processing larger inputs, we will be limited by the RAM size; if the data structure doesn’t
fit into RAM, we will get a lot of page swapping, which means disk accesses, which are much
much slower than RAM accesses

Search

binary search: O(mlogn) (worse than ST — O(m))

suffixes starting with P form one continuous section in SA

can be improved to O(m + logn) at the cost of more memory:

let 1cp(4, j) be the longest common prefix of the i-th and j-th suffix in order

idea 1: if the upper and lower estimates have lcp > 0, we can skip these characters (still mlogn
in worst case)

let’s x be the searched text, let suffixes ¢, r be the lower and upper limits, respectively

e invariant: £ < z <, x; = lep(x, £), x, = lep(z, r)
e ie. x4 (and z,) is the number of symbols from the beginning, where x and ¢ (z and r) match

(see the gray sections in the figure); ¢[xy] < x[z¢] (red character) and z[z,| < r[z,] (green
character)
WLOG let xp > x,, let’s look at the middle suffix m; what is p = lep(¢, m)?

— a) if p < x4 (fig. left), it means that the common prefix lep(¢, m) is shorter than the common
prefix lep(z, £); at the same time ¢ < m, i.e. {[p] < £[m]; but £[p] = z[p] because their lcp
is longer (the blue character in Fig. left is the same in  and ¢ and smaller than the black
character in m); this implies < m and in constant time, we deduced that we need to
continue searching in the first half

— b) on the other hand, if p > x, (middle fig.), then £ and m have more characters in common
than z, and, specifically, the x,-th character, in which ¢ and x differ; it follows that z > m
and we should search in the second half (time O(1) again)

— ¢) only if p = z, (fig. right), we cannot decide right away — in this case, we start comparing
characters (from position p) and decide accordingly; in any case, max(zs, x,.) will increase

e if 2y < x,., we proceed symmetrically (we compare p = lep(m, r))
e note that every time we start comparing characters in case (c), max(xy,,) increases and

max(xg, x,) < m so there will be at most m such comparisons in total; the other cases take
O(1), so the whole search takes O(m + logn)



INVARIANTY: £ <z <7, xp=lep(z,f), x, =lep(x,r) INVARIANTY: (< ax <7, x¢=lep(x,f), x.=lcp(z,r) INVARIANTY: (< <r, x¢=Ilcp(x,l), z,=lcp(z,r)

3 LCP

4 Construction

e gsort — O(n?logn) (meh)
e radix sort — O(n?) (meh)
e Manber—Myers: suffix of a suffix is also a suffix!
— if we have an array sorted by the first K symbols, we can easily sort it by the first 2K
symbols
— when comparing S[i...] vs. S[j...], we already know the result of comparison S[i...i+ K]
vs. S[j ... j+K]; if that’s a tie, look at the relative order of suffixes S[i+K ...] vs. S[j+K .. ]
— we will have logn phases; in the k-th stage we sort all suffixes according to the first 2F
symbols
— let rank[i] = j if the suffix s; is the j-th in alphabetical order (according to the first 2%
symbols; if two suffixes have the same first 2* symbols, the ranks will be same)
— phase: just sort the triples (rank[i], rank[i + 2], 4)
e even better? yes, there is a linear construction:

e there are actually multiple O(n) algs; this is by Kirkkiinen & Sanders ’03:

e divided all suffixes into those at positions indivisible vs. positions divisible by 3

e recursively sort the positions = 1,2 (mod 3) (and for every such suffix, calculate the position
in the sorted array)

e when we have it, we sort the positions divisible by 3 by tinrollingéne symbol and looking at
the relative order of the suffixes not divisible by 3 — we sort the pairs (first symbol, position in
the 1 shorter suffix in the already sorted suffix array) by radix sort

e now we have two sorted arrays (suffixes at positions divisible and indivisible by 3) — we merge
them with the classic merge algorithm, the comparison is in O(1):

— if we compare suffixes at positions 1 vs. 0 (mod 3), we iinrolléne symbol and get positions
2 vs. 1 (both positions are indivisible by 3 now so we know their relative order in O(1))

— if we compare suffixes at positions 2 vs. 0 (mod 3), we iinroll” two symbols and get positions
1vs. 2 (mod 3) (again both are indivisible by 3 now)

e resulting complexity: T'(n) = T(3n) + O(n) where T'(2n) is the time of the recursive call and
O(n) is the sorting of positions divisible by 3 and merging; this recursion has solution O(n)

e note that we still have a problem: when using recursion, we can only do a recursive call for
the same problem — but “calculate SA but just for selected positionsis not the same problem
as “calculate SA”

e trick: we take the original string from the 1st symbol and consider each triplet of characters
as 1 symbol, then the suffixes of this string correspond to the suffixes at pos. = 1 (mod 3) in
the original string



after that, we concatenate the original string starting from the 2nd symbol and again, each
triplet will be 1 symbol — suffixes of this string correspond to the suffixes at pos. =2 (mod 3)
thus, we get a new string of length 2/3n and its suffixes correspond to suffixes at positions
= 1,2 (mod 3) in the original string

new problem: huge alphabet; wtf you mean by “let’s 3 chars now be 1 char- then the alphabet
of size o will become size 02 and it will grow exponentially

second trick: a string of length n can contain at most n different symbols, i.e. we can just
radix-sort and renumber the characters — this way, we keep the alphabet size < n
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