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1 Introduction

• suffix array (SA) is simply an array of suffixes sorted lexicographically
• motivation: suffix trees (ST) take up an awful lot of memory – even if we’re very very careful,
10-20B/character (just a single pointer takes 8 bytes!)

• suffix arrays need 1 int/character; if we have text up to 4 billion characters, we can use a 32-bit
int, which is 4B/character + the text itself

• take for example the human genome, which is a string of about 3 billion characters from the
alphabet A, C, G, T

• the string itself therefore takes about 3GB (if we use 1B/character), or 750MB if we use packed
representation with 2bits/character

• the suffix tree will occupy 30–60GB or more and the suffix array about 12GB (+the string
itself +0.75GB)

• and that’s just the memory of the resulting structure, where we don’t count the memory used
temporarily during construction

• when processing larger inputs, we will be limited by the RAM size; if the data structure doesn’t
fit into RAM, we will get a lot of page swapping, which means disk accesses, which are much
much slower than RAM accesses

2 Search

• binary search: O(m log n) (worse than ST – O(m))
• suffixes starting with P form one continuous section in SA
• can be improved to O(m+ log n) at the cost of more memory:
• let lcp(i, j) be the longest common prefix of the i-th and j-th suffix in order
• idea 1: if the upper and lower estimates have lcp > 0, we can skip these characters (still m log n

in worst case)
• let’s x be the searched text, let suffixes ℓ, r be the lower and upper limits, respectively
• invariant: ℓ < x ≤ r, xℓ = lcp(x, ℓ), xr = lcp(x, r)
• i.e. xℓ (and xr) is the number of symbols from the beginning, where x and ℓ (x and r) match

(see the gray sections in the figure); ℓ[xℓ] < x[xℓ] (red character) and x[xr] < r[xr] (green
character)

• WLOG let xℓ > xr, let’s look at the middle suffix m; what is p = lcp(ℓ,m)?
– a) if p < xℓ (fig. left), it means that the common prefix lcp(ℓ,m) is shorter than the common

prefix lcp(x, ℓ); at the same time ℓ < m, i.e. ℓ[p] < ℓ[m]; but ℓ[p] = x[p] because their lcp
is longer (the blue character in Fig. left is the same in x and ℓ and smaller than the black
character in m); this implies x < m and in constant time, we deduced that we need to
continue searching in the first half

– b) on the other hand, if p > xℓ (middle fig.), then ℓ and m have more characters in common
than xℓ and, specifically, the xℓ-th character, in which ℓ and x differ; it follows that x > m
and we should search in the second half (time O(1) again)

– c) only if p = xℓ (fig. right), we cannot decide right away – in this case, we start comparing
characters (from position p) and decide accordingly; in any case, max(xℓ, xr) will increase

• if xℓ ≤ xr, we proceed symmetrically (we compare p = lcp(m, r))
• note that every time we start comparing characters in case (c), max(xℓ, xr) increases and

max(xℓ, xr) ≤ m so there will be at most m such comparisons in total; the other cases take
O(1), so the whole search takes O(m+ log n)
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3 LCP

4 Construction

• qsort – O(n2 log n) (meh)
• radix sort – O(n2) (meh)
• Manber–Myers: suffix of a suffix is also a suffix!

– if we have an array sorted by the first K symbols, we can easily sort it by the first 2K
symbols

– when comparing S[i . . .] vs. S[j . . .], we already know the result of comparison S[i . . . i+K]
vs. S[j . . . j+K]; if that’s a tie, look at the relative order of suffixes S[i+K . . .] vs. S[j+K . . .]

– we will have log n phases; in the k-th stage we sort all suffixes according to the first 2k

symbols
– let rank[i] = j if the suffix si is the j-th in alphabetical order (according to the first 2k

symbols; if two suffixes have the same first 2k symbols, the ranks will be same)
– phase: just sort the triples (rank[i], rank[i+ 2k], i)

• even better? yes, there is a linear construction:

• there are actually multiple O(n) algs; this is by Kärkkäinen & Sanders ’03:
• divided all suffixes into those at positions indivisible vs. positions divisible by 3
• recursively sort the positions ≡ 1, 2 (mod 3) (and for every such suffix, calculate the position
in the sorted array)

• when we have it, we sort the positions divisible by 3 by ünrollingöne symbol and looking at
the relative order of the suffixes not divisible by 3 – we sort the pairs (first symbol, position in
the 1 shorter suffix in the already sorted suffix array) by radix sort

• now we have two sorted arrays (suffixes at positions divisible and indivisible by 3) – we merge
them with the classic merge algorithm, the comparison is in O(1):
– if we compare suffixes at positions 1 vs. 0 (mod 3), we ünrollöne symbol and get positions

2 vs. 1 (both positions are indivisible by 3 now so we know their relative order in O(1))
– if we compare suffixes at positions 2 vs. 0 (mod 3), we ünroll”two symbols and get positions
1 vs. 2 (mod 3) (again both are indivisible by 3 now)

• resulting complexity: T (n) = T ( 23n) +O(n) where T ( 23n) is the time of the recursive call and
O(n) is the sorting of positions divisible by 3 and merging; this recursion has solution O(n)

• note that we still have a problem: when using recursion, we can only do a recursive call for
the same problem – but “calculate SA but just for selected positions̈ıs not the same problem
as “calculate SA”

• trick: we take the original string from the 1st symbol and consider each triplet of characters
as 1 symbol, then the suffixes of this string correspond to the suffixes at pos. ≡ 1 (mod 3) in
the original string
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• after that, we concatenate the original string starting from the 2nd symbol and again, each
triplet will be 1 symbol – suffixes of this string correspond to the suffixes at pos. ≡ 2 (mod 3)

• thus, we get a new string of length 2/3n and its suffixes correspond to suffixes at positions
≡ 1, 2 (mod 3) in the original string

• new problem: huge alphabet; wtf you mean by “let’s 3 chars now be 1 char- then the alphabet
of size σ will become size σ3 and it will grow exponentially

• second trick: a string of length n can contain at most n different symbols, i.e. we can just
radix-sort and renumber the characters – this way, we keep the alphabet size ≤ n
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