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1 Dijkstra’s algorithm

• Dijkstra’ algorithm finds the shortest path from starting vertex s to all other vertices in a
graph with non-negative edge lengths; it works as follows:
– each vertex is in one of 3 states: unreached (we haven’t reached these yet, their distance is
still ∞), tentative (this is the boundary; we know some path to these vertices but it can
still improve as we explore different paths), and done (we already know the true distance
from s)

– we maintain tentative distance d(x) for each vertex x, such that some path from s to x has
total length d(x)

– initially s is tentative with d(s) = 0 and every x ̸= s is unreached with d(x) = ∞
– select a tentative vertex x such that d(x) is minimum and declare it done; for each edge
(x, y), if d(x) + c(x, y) < d(y), replace d(y) by d(x) + c(x, y) and declare y tentative

• we can implement this using a priority queue as follows:
– we maintain the tentative vertices in a heap (ordered by d)
– we select vertex with minimum distance by calling get_min

– when we find a shorter route and replace d(y) by d(x) + c(x, y), we call decrease_key
– when declaring an unreached vertex as tentative (d(x) changes from ∞ to sth finite), we
insert it in the heap

• the resulting complexity is O(n× (Tinsert + Tget_min) +m× Tdecrease_key)

– implementation with a simple array is O(n× (1 + n) +m× 1) = O(n2),
– with binary heap this is O(n× (log n+ log n) +m× log n) = O(m log n),
– and with Fibonacci heap O(n×(1+log n)+m×1) = O(m+n log n) (but this is impractical)

2 Integer lengths

• now assume that all lengths are integers from the range [0, 1, . . . , C] – can we implement
something better?

• extreme case: if all lengths are 1, we could use BFS, which is O(m)
• if we only have very small lengths, we could replace each edge of length c by a path of length c
(c unit edges) and then use BFS – the number of edges will grow ≤ C times so the complexity
will be O(C ×m)

• another idea: all distances will be in the range [0, 1, . . . , n×C], so we could use a simple array,
where we would have all the vertices at distance d in slot d of the array

• we would step through this array from left to right – some fields will be empty, but when we
come across non-empty ones, these vertices are at the minimum distance among unprocessed
vertices

• all operations are constant time, except that we have to traverse the entire array, so this is
O(m+ n× C) time and space

• can we do better?
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3 Radix heap

• note two important properties related to how Dijkstra’s algorithm uses its heap:
– get_min operations return a non-decreasing sequence of distances – when we process some
vertex at distance d, all the other vertices that we will encounter have an even greater
distance!

– let x be the last removed vertex (done vertex with max distance); then all the tentative
vertices have distance in the range [d(x), d(x) + 1, . . . , d(x) + C]

– why? when a vertex turns from unreached to tentative, the distance is in that range;
since then, its distance can only decrease and distance of the last removed vertex can only
increase, so all tentative distances remain in the range [d(x), d(x) + 1, . . . , d(x) + C]

• two things follow from this:
– we only need a so-called monotone heap, which assumes that successive get_min operations
return vertices in nondecreasing order and all inserts and decrease-keys never add an
element smaller than the current minimum

– O(C) memory should be enough – if we maintain the relative distance from the last vertex,
then we only need values [0, . . . , C] and ∞

3.1 Idea

• we will have buckets with value ranges of length 1, 1, 2, 4, 8, 16, 32, . . . (O(logC) buckets are
enough), plus we will remember the value of the last_deleted element

• the original version of the data structure (https://kubokovac.eu/ds/mat/sssp.pdf) split all
elements into buckets based on the difference from last_deleted; we will describe a simpler
andmore efficient variant which is also explained here: http://ssp.impulsetrain.com/radix-heap.html

• first, let’s start with a toy example and see, what is happening conceptually , then we will talk
about implementation

• let’s assume we are working with 5-bit integers, i.e. numbers in the range 00000 . . . 11111 in
binary

• we can imagine these in a form of a binary tree where 0 bit goes left and 1 goes right
(NOTE: this is just an imaginary/implicit tree to help us with the explanation, but it is NOT
constructed in the actual implementation)

• every 5-bit number corresponds to a single root-to-leaf path in this tree, e.g. 2 = 00010 is the
bold path above

• a shorter prefix corresponds to a subtree / a range of numbers; range 01000. . . 01111 (or 01∗∗∗;
where ∗ is a wildcard denoting 0 or 1) is shown above

• we will split these into buckets based on themost significant bit (MSB) where x and last_deleted
differ

• in our imaginary tree, the MSB corresponds to the first point where the root-to-leaf paths
differ; last_deleted goes left and x goes right

• example: let last_deleted = 2; e.g. MSB(2, 13) = MSB(00010, 01101) = 4, so 13 goes to
bucket #4 (see the range depicted above)
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• let last_deleted = 2; all numbers in the heap will be ≥ 2 and we will have the following
buckets (see Fig. above):
– 0: 00010 (number 2 itself)
– 1: 00011 (number 3; differing in the 1st bit from right)
– 2: —— (numbers differing in the 2nd bit are smaller than 2, so this bucket is empty)
– 3: 001∗∗ (numbers 4–7; differing in 3rd bit)
– 4: 01∗∗∗ (numbers 8–15; differing in 4th bit)
– 5: 1∗∗∗∗ (numbers 16–31; differing in 5th bit)

• more generally: for element x, take the binary representation of numbers x and last_deleted

and let i be the most significant bit (MSB) where x and last_deleted differ (counting from
1 from right; define i = 0 if x = last_deleted); then put x into the i-th bucket

• this basically amounts to computing a XOR of x and last_deleted and then finding the
highest set bit (XOR of two numbers has bits set at positions where they differ and zeros at
positions where the corresponding bits are the same)

• if we want to insert a new element, we simply insert it into the correct bucket
• if we want to change the value of an element (while we know its position in the heap), we
simply remove it and reinsert it where it belongs

• how does get_min work?
– if the 0th bucket is non-empty, we just remove and return that number
– otherwise, traverse from left to right until we find the first non-empty bucket (that’s at
most O(logC) steps)

– then go through this entire bucket and find a new minimum (note that numbers in a single
bucket do not have to be sorted!)

– remove this minimum and move all other elements from this bucket to their correct buckets,
based on the new value of last_deleted

• say the radix heap contains numbers 5, 6 (in bucket 3), 8, 10, 11, 17 (in bucket 4), 18, 27 (in
bucket 5) and 2 is the last_deleted (see Fig. above)

• if we get_min, we scan buckets 0, 1, 2 and find #3 as the first non-empty bucket; we return 5
and move 6 to the 2nd bucket; after the operation, the heap will look like this:
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• if we get_min again, we return 6 from the 2nd bucket and the heap will look like this:

• finally, if we get_min again, bucket 4 is the first non-empty
• last_deleted started 00∗∗∗ but there are no more elements in that left subtree and subtree
01∗∗∗ is the first nonempty

• we find that 8 is the minimum and redistribute the rest (10, 11, and 17) into buckets 0...3
based on the new value of last_deleted = 8 (see Fig. below)

• note that all the elements in bucket 4 start 01∗∗∗ so they can only differ in bits 1...3
• also note that for the higher buckets (only bucket 5 in this toy example) nothing changes –
they still differ from the new value of last_deleted in the higher bits, so there is no need to
move them

• in general, if k is the first non-empty bucket, it means that the previous last_deleted had
k-th bit 0; there are no more elements in that left subtree; so we traverse the right subtree,
find the minimum of the k-th bucket and split all the other numbers into buckets 0,. . . ,k − 1;
the higher buckets are unaffected

• how much time do these operations take?
– insert and decrease_key is obviously O(1)
– get_min is in O(logC + B), where B is the size of the bucket we process – in the worst
case it can be Θ(N), but amortized it’s still O(logC) – why?

– let’s look at the life cycle of a single element: first, we put it in some bucket and from
then on it only moves to the left! decrease_key only moves it to the left and each bucket
redistribution during get_min moves elements only to the left

– but since we only have O(logC) buckets, each element can be moved only O(logC)-times
– we can imagine charging lgC$ to the insert operation and all later moves can be paid

from that
– think about it for a minute: the worst-case complexity of insert is O(1), but if we make the

amortized cost O(logC) (i.e. much more than O(1)), then the amortized cost of get_min
can be also O(logC); this is a nice example how by over-charging one operation we can pay
for another operation
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3.2 Implementation

• each bucket will be a simple (unsorted) vector
– (don’t use linked lists due to cache-efficiency)
– remember that when removing an element from a vector, you definitely don’t want to use
a function that deletes an element and moves all the elements after it – this has linear
complexity! (how to do it in O(1)?)

• see also http://ssp.impulsetrain.com/radix-heap.html for an explanation and a picture
with a bigger (32-bit) example:

• the whole heap can be just a simple array of 33 or 65 buckets (depending on whether you want
to work with 32-bit or 64-bit numbers)

• how do we find the correct bucket for number x?
– just compute bitwise XOR of last_deleted and x and find the highest set bit
– e.g. if these were 01001110 and 01011000, the XOR is 00010110
– remember that XOR has 1 on the positions where the numbers differ and 0 elsewhere
– the highest set bit can be calculated on current CPUs using a single instruction (see BSR
– bit scan reverse, https://c9x.me/x86/html/file_module_x86_id_20.html)

– you can google how to do this with your compiler; e.g., if you are compiling with gcc, you can
compute the highest set bit by 31-__builtin_clz(d) if d is a 32-bit number; CLZ means
“count leading zeros” – see https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
for a list of accessible built-in functions (these usually compile to simple instructions); e.g.,
__builtin_clzll is a variant for unsigned long long

– you can use 8 ∗ sizeof(int) to find how many bits does an int have
• note that for the Dijkstra algorithm, you will also need to be able to find a given vertex x in

the heap so you will need to maintain and update a table with positions of vertices in the heap
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