Lecture 8 Binomial Heaps

Binomial heaps were invented in 1978 by J. Vuillemin [106]. They give a
data structure for maintaining a collection of elements, each of which has a
value drawn from an ordered set, such that new elements can be added and
the element of minimum value extracted efficiently. They admit the following
operations:

makeheap(i) return a new heap containing only element i

findmin(h) return a pointer to the element of & of minimum value
insert(h, 7) add element ¢ to heap h

deletemin(k) delete the element of minimum value from A

meld(h, h’) combine heaps 4 and A’ into one heap

Efficient searching for objects is not supported.
In the next lecture we will extend binomial heaps to Fibonacci heaps [35),
which allow two additional operations:

decrement(h,i,A) decrease the value of i by A
delete(h, 1) remove ¢ from heap A

We will see that these operations have low amortized costs. This means
that any particular operation may be expensive, but the costs average out so
that over a sequence of operations, the number of steps per operation of each
type is small. The amortized cost per operation of each type is given in the
following table:

40

LECTURE 8 BINOMIAL HEAPS 41

makeheap O(1)
findmin 0(1)

insert O(1)
deletemin O(logn)
meld O(1) for the lazy version

O(logn) for the eager version
decrement O(1)
delete O(logn)

where n is the number of elements in the heap.
Binomial heaps are collections of binomial trees, which are defined induc-
tively: the 7 binomial tree B; consists of a root with i children By, ..., B;_,.

Bo By B Bj

A,

It is easy to prove by induction that | B;| = 2¢.

If data elements are arranged as vertices in a tree, that tree is said to be
heap-ordered if the minimum value among all vertices of any subtree is found
at the root of that subtree. A binomial heap is a collection of heap-ordered
binomial trees with a pointer min to the tree whose root has minimum value.
We will assume that all children of any vertex are arranged in a circular
doubly-linked list, so that we can link and unlink subtrees in constant time.

Definition 8.1 The rank of an element z, denoted rank (z), is the number
of children of . For instance, rank (root of B;) = i. The rank of a tree is the
rank of its root. O

A basic operation on binomial trees is linking. Given two B;’s, we can
combine them into a B;,; by making the root of one B; a child of the root of
the other. We always make the B; with the larger root value the child so as
to preserve heap order. We never link two trees of different rank.

8.1 Operations on Binomial Heaps

In the “eager meld” version, the trees of the binomial heap are accessed
through an array of pointers, where the ith pointer either points to a B; or
is nil. The operation meld(h, A’), which creates a new heap by combining &
and h', is reminiscent of binary addition. We start with i = 0. If either A or
h' has a By and the other does not, we let this By be the By of meld(h, b').
If neither & nor A’ have a By, then neither will meld(h, 2'). If both A and A’
have a By, then meld(k, A’) will not; but the two By’s are linked to form a

42 LECTURE 8 BINOMIAL HEAPS

B,, which is treated like a carry. We then move on to the B;’s. At stage ¢,
we may have 0, 1, or 2 B;’s from A and A’, plus a possible B; carried from the
previous stage. If there are at least two B;’s, then two of them are linked to
give a B; ., which is carried to the next stage; the remaining B;, if it exists,
becomes the B; of meld(h, A’). The entire operation takes O(logn) time, be-
cause the size of the largest tree is exponential in the largest rank. We will
modify the algorithm below to obtain a “lazy meld” version, which will take
constant amortized time.

The operation insert(i, k) is just meld(h, makeheap(7)).

For the operation deletemin(h), we examine the min pointer to z, the
root of some Bi. Removing z creates new trees By, . .., Bix_1, the children of
x, which are formed into a new heap A’. The tree B is removed from the old
heap A. Now 2 and A’ are melded to form a new heap. We also scan the new
heap to determine the new min pointer. All this requires O(logn) time.

8.2 Amortization

The O(logn) bound on meld and deletemin is believable, but how on earth
can we do insert operations in constant time? Any particular insert opera-
tion can take as much as O(logn) time because of the links and carries that
must be done. However, intuition tells us that in order for a particular insert
operation to take a long time, there must be a lot of trees already in the heap
that are causing all these carries. We must have spent a lot of time in the
past to create all these trees. We will therefore charge the cost of performing
these links and carries to the past operations that created these trees. To the
operations in the past that created the trees, this will appear as a constant
extra overhead.

This type of analysis is known as amortized analysis, since the cost of a
sequence of operations is spread over the entire sequence. Although the cost
of any particular operation may be high, over the long run it averages out so
that the cost per operation is low.

For our amortized analysis of binomial heaps, we will set up a savings
account for each tree in the heap. When a tree is created, we will charge
an extra credit to the instruction that created it and deposit that credit to
the account of the tree for later use. (Another approach is to use a potential
function; see [100].) We will maintain the following credit invariant.

Each tree in the heap has one credit in its account.

Each insert instruction creates one new singleton tree, so it gets charged
one extra credit, and that credit is deposited to the account of the tree that
was created. The amount of extra time charged to the insert instruction is
O(1). The same goes for makeheap. The deletemin instruction exposes up
to logn new trees (the subtrees of the deleted root), so we charge an extra

LECTURE 8 BINOMIAL HEAPS 43

logn credits to this instruction and deposit them to the accounts of these
newly exposed trees. The total time charged to the deletemin instruction is
still O(log n).

We use these saved credits to pay for linking later on. When we link a tree
into another tree, we pay for that operation with the credit associated with
the root of the subordinate tree. The insert operation might cause a cascade
of carries, but the time to perform all these carries is already paid for. We
end up with a credit still on deposit for every exposed tree and only O(1) time
charged to the insert operation itself.

8.3 Lazy Melds

We can also perform meld operations in constant time with a slight modifica-
tion of the data structure. Rather than using an array of pointers to trees, we
use a doubly linked circular list. To meld two heaps, we just concatenate the
two lists into one and update the min pointer, certainly an O(1) operation.
Then insert(h, i) is just meld(h, makeheap(i)).

The problem now is that unlike before, we may have several trees of the
same rank. This will not bother us until we need to do a deletemin. Since in
a deletemin we will need O(log n) time anyway to find the minimum among
the deleted vertex’s children, we will take this opportunity to clean up the
heap so that there will again be at most one tree of each rank. We create an
array of empty pointers and go through the list of trees, inserting them one
by one into the list, linking and carrying if necessary so as to have at most
one tree of each rank. In the process, we search for the minimum.

We perform a constant amount of work for each tree in the list in addition
to the linking. Thus if we start with m trees and do k links, then we spend
O(m + k) time in all. To pay for this, we have k saved credits from the links,
plus an extra logn credits we can charge to the deletemin operation itself,
so we will be in good shape provided m + k is O(k + logn). But each link
decreases the number of trees by one, so we end up with m — k trees, and
these trees all have distinct ranks, so there are at most logn of them; thus

m+k 2k + (m — k)
< 2k+logn

O(k + logn) .

Lecture 9 Fibonacci Heaps

Fibonacci heaps were developed by Fredman and Tarjan in 1984 [35] as a
generalization of binomial heaps. The main intent was to improve Dijkstra’s
single-source shortest path algorithm to O(m + nlogn), but they have many
other applications as well. In addition to the binomial heap operations, Fi-
bonacci heaps admit two additional operations:

decrement(h,i,A) decrease the value of i by A
delete(h, i) remove i from heap A

These operations assume that a pointer to the element ¢ in the heap £ is given.

In this lecture we describe how to modify binomial heaps to admit delete
and decrement. The resulting data structure is called a Fibonacci heap.
The trees in Fibonacci heaps are no longer binomial trees, because we will be
cutting subtrees out of them in a controlled way. We will still be doing links
and melds as in binomial heaps. The rank of a tree is still defined in the same
way, namely the number of children of the root, and as with binomial heaps
we only link two trees if they have the same rank.

To perform a delete(i), we might cut out the subtree rooted at ¢, remove
i, and meld in its newly freed subtrees. We must also search these newly
freed subtrees for the minimum root value; this requires O(logn) time. In
decrement (i, A), we decrement the value of i by A. The new value of i
might violate the heap order, since it might now be less than the value of i’s
parent. If so, we might simply cut out the subtree rooted at i and meld it
into the heap.

44

LECTURE 9 FIBonAccClI HEAPS 45

The problem here is that the O(log n) time bound on deletemin described
in the last lecture was highly dependent on the fact that the size of By is
exponential in k, i.e. the trees are bushy. With delete and decrement as
described above, cutting out a lot of subtrees might make the tree scraggly,
so that the analysis is no longer valid.

9.1 Cascading Cuts

The way around this problem is to limit the number of cuts among the children
of any vertex to two. Although the trees will no longer be binomial trees, they
will still be bushy in that their size will be exponential in their rank.

For this analysis, we will set up a savings account for every vertex. The
first time a child is cut from vertex p, charge to the operation that caused the
cut two extra credits and deposit them to the account of p. Not only does this
give two extra credits to use later, it also marks p as having had one child cut
already. When a second child is cut from p, cut p from its parent p’ and meld
p into the heap, paying for it with one of the extra credits that was deposited
to the account of p when its first child was cut. The other credit is left in
the account of p in order to maintain the invariant that each tree in the heap
have a credit on deposit. If p was the second child cut from its parent p’, then
P’ is cut from its parent; again, this is already paid for by the operation that
cut the first child of p’. These cuts can continue arbitrarily far up the tree;
this is called cascading cuts. However, all these cascading cuts are already
paid for. Thus decrement is O(1), and delete will still be O(log n) provided
our precautions have guaranteed that the sizes of trees are still exponential in
their rank.

Theorem 9.1 The size of a tree with root r in a Fibonacci heap is exponential
in rank (7).

Proof. Fix a point in time. Let z be any vertex and let yy,...,9,, be the
children of x at that point, arranged in the order in which they were linked
into . We show that rank (y;) is at least i — 2. At the time that y; was linked
into z, z had at least the — 1 children y1,...,%-; (it may have had more
that have since been cut). Since only trees of equal rank are linked, y; also
had at least i — 1 children at that time. Since then, at most one child of y;
has been cut, or y; itself would have been cut. Therefore the rank of y; 1s at
least 7 — 2.

We have shown that the i** child of any vertex has rank at least i — 2. Let
F, be the smallest possible tree of rank n satisfying this property. The first
few F,, are illustrated below.

46 LEcTURE 9 FIiBoNAaccl HEAPS

'“ ”Mm

Observe that Fy, F\, Fs, F3, Fy, Fs,. .., are of size 1,2,3,5,8,13.. ., respec-
tively. This sequence of numbers is called the szona.ccz sequence, in which
each number is obtained by adding the previous two. It therefore suffices to
show that the nt® Fibonacci number f, = |F,| is exponential in n.

Specifically, we show that f, > ¢", where ¢ = 535 ~ 1.618..., the
positive root of the quadratic 2* — — 1. The proof proceeds by induction on
n.

For the basis, fy = 1 > ¢° and f; = 2 > ¢'. Now assume that f, > ¢"
and f,.1 > ¢™*!. Then

fn+1 + fn
(pn+1 +<pn
" (p+1)

" - p? since p? = +1
(pn+2)

fn+2

AV

O

The real number ¢ is often called the golden ratio. It was considered the
most perfect proportion for a rectangle by the ancient Greeks because it makes
the ratio of the length of the longer side to the length of the shorter side equal
to the ratio of the sum of the lengths to the length of the longer side.

b a+b
’ PTeT T

b

(The picture is actually 81pt x 50pt, giving a ratio of 1.62. Apologies to the
ancient Greeks.)

The golden ratio ¢ is more closely related to the Fibonacci sequence than
is apparent from the proof of Theorem 9.1. Consider the linear system

A - e 04

which generates the Fibonacci sequence:

T - (4]
1 1_ fl fn+1 .

LECTURE 9 FiBoNAaccl HEAPS 47

Let F denote the 2 x 2 matrix in (14). The eigenvalues of F are ¢ and
¢ = lﬁzé, the two roots of its characteristic polynomial

det(z] —F) = 2*—z—1.

The eigenvectors associated with ¢ and ¢’ are

o] = 3]

respectively, of which the former is dominant. Successive applications of a
matrix to a vector with a nonzero component in the direction of a dominant
eigenvector, suitably scaled, will generate a sequence of vectors converging to
that dominant eigenvector. Thus

ol] - e L] - 6]

as n — o0; In other words, the ratio of successive Fibonacci numbers tends to
Pp.

9.2 Fibonacci Heaps and Dijkstra’s Algorithm

We can use Fibonacci heaps to implement Dijkstra’s single-source shortest-
path algorithm (Algorithm 5.1) in O(m+nlogn) time. We store the elements
of V — X in a Fibonacci heap. The value of the element v is D(v). The
initialization uses the makeheap operation and takes linear time. We use the
decrement operation to implement the statement

D(v) := min(D(v), D(u) + £(u,v)) .

This requires constant time for each edge, or O(m) time in all. We use the
deletemin operation to remove a vertex from the set of unreached vertices.
This takes O(logn) time for each deletion, or O(nlogn) time in all.

Another application of Fibonacci heaps is in Prim’s algorithm for minimum
spanning trees. We leave this application as an exercise (Homework 4, Exercise

1).

