
19 Binomial Heaps

This chapter and Chapter 20 present data structures known asmergeable heaps,
which support the following five operations.

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, x) inserts nodex, whosekey field has already been filled in, into
heapH .

M INIMUM (H ) returns a pointer to the node in heapH whose key is minimum.

EXTRACT-M IN(H ) deletes the node from heapH whose key is minimum, return-
ing a pointer to the node.

UNION(H1, H2) creates and returns a new heap that contains all the nodes of heaps
H1 andH2. HeapsH1 andH2 are “destroyed” by this operation.

In addition, the data structures in these chapters also support the following two
operations.

DECREASE-KEY(H, x, k) assigns to nodex within heapH the new key valuek,
which is assumed to be no greater than its current key value.1

DELETE(H, x) deletes nodex from heapH .

As the table in Figure 19.1 shows, if we don’t need the UNION operation, ordi-
nary binary heaps, as used in heapsort (Chapter 6), work well. Operations other
than UNION run in worst-case timeO(lg n) (or better) on a binary heap. If the
UNION operation must be supported, however, binary heaps performpoorly. By
concatenating the two arrays that hold the binary heaps to bemerged and then run-
ning MIN-HEAPIFY (see Exercise 6.2-2), the UNION operation takes2(n) time in
the worst case.

1As mentioned in the introduction to Part V, our default mergeable heaps are mergeable min-
heaps, and so the operations MINIMUM , EXTRACT-M IN, and DECREASE-KEY apply. Alterna-
tively, we could define amergeable max-heapwith the operations MAXIMUM , EXTRACT-MAX ,
and INCREASE-KEY.
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Binary heap Binomial heap Fibonacci heap
Procedure (worst-case) (worst-case) (amortized)

MAKE -HEAP 2(1) 2(1) 2(1)

INSERT 2(lg n) O(lg n) 2(1)

M INIMUM 2(1) O(lg n) 2(1)

EXTRACT-M IN 2(lg n) 2(lg n) O(lg n)

UNION 2(n) O(lg n) 2(1)

DECREASE-KEY 2(lg n) 2(lg n) 2(1)

DELETE 2(lg n) 2(lg n) O(lg n)

Figure 19.1 Running times for operations on three implementations of mergeable heaps. The
number of items in the heap(s) at the time of an operation is denoted byn.

In this chapter, we examine “binomial heaps,” whose worst-case time bounds are
also shown in Figure 19.1. In particular, the UNION operation takes onlyO(lg n)

time to merge two binomial heaps with a total ofn elements.
In Chapter 20, we shall explore Fibonacci heaps, which have even better time

bounds for some operations. Note, however, that the runningtimes for Fibonacci
heaps in Figure 19.1 are amortized time bounds, not worst-case per-operation time
bounds.

This chapter ignores issues of allocating nodes prior to insertion and freeing
nodes following deletion. We assume that the code that callsthe heap procedures
deals with these details.

Binary heaps, binomial heaps, and Fibonacci heaps are all inefficient in their
support of the operation SEARCH; it can take a while to find a node with a given
key. For this reason, operations such as DECREASE-KEY and DELETE that refer
to a given node require a pointer to that node as part of their input. As in our
discussion of priority queues in Section 6.5, when we use a mergeable heap in
an application, we often store a handle to the correspondingapplication object
in each mergeable-heap element, as well as a handle to corresponding mergeable-
heap element in each application object. The exact nature ofthese handles depends
on the application and its implementation.

Section 19.1 defines binomial heaps after first defining theirconstituent binomial
trees. It also introduces a particular representation of binomial heaps. Section 19.2
shows how we can implement operations on binomial heaps in the time bounds
given in Figure 19.1.
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19.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so this section starts by defining
binomial trees and proving some key properties. We then define binomial heaps
and show how they can be represented.

19.1.1 Binomial trees

The binomial tree Bk is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.2(a), the binomial treeB0 consists of a single node. The
binomial treeBk consists of two binomial treesBk−1 that arelinked together: the
root of one is the leftmost child of the root of the other. Figure 19.2(b) shows the
binomial treesB0 throughB4.

Some properties of binomial trees are given by the followinglemma.

Lemma 19.1 (Properties of binomial trees)
For the binomial treeBk,

1. there are 2k nodes,

2. the height of the tree isk,

3. there are exactly
(k

i

)
nodes at depthi for i = 0, 1, . . . , k, and

4. the root has degreek, which is greater than that of any other node; moreover if
the children of the root are numbered from left to right byk − 1, k − 2, . . . , 0,
child i is the root of a subtreeBi .

Proof The proof is by induction onk. For each property, the basis is the binomial
treeB0. Verifying that each property holds forB0 is trivial.

For the inductive step, we assume that the lemma holds forBk−1.

1. Binomial treeBk consists of two copies ofBk−1, and soBk has 2k−1+2k−1 = 2k

nodes.

2. Because of the way in which the two copies ofBk−1 are linked to formBk, the
maximum depth of a node inBk is one greater than the maximum depth inBk−1.
By the inductive hypothesis, this maximum depth is(k− 1)+ 1= k.

3. Let D(k, i ) be the number of nodes at depthi of binomial treeBk. SinceBk

is composed of two copies ofBk−1 linked together, a node at depthi in Bk−1

appears inBk once at depthi and once at depthi + 1. In other words, the
number of nodes at depthi in Bk is the number of nodes at depthi in Bk−1 plus
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Figure 19.2 (a)The recursive definition of the binomial treeBk. Triangles represent rooted sub-
trees. (b) The binomial treesB0 through B4. Node depths inB4 are shown.(c) Another way of
looking at the binomial treeBk.

the number of nodes at depthi − 1 in Bk−1. Thus,

D(k, i ) = D(k− 1, i )+ D(k− 1, i − 1) (by the inductive hypothesis)

=
(

k− 1

i

)
+
(

k− 1

i − 1

)
(by Exercise C.1-7)

=
(

k

i

)
.

4. The only node with greater degree inBk than in Bk−1 is the root, which
has one more child than inBk−1. Since the root ofBk−1 has degreek − 1,
the root of Bk has degreek. Now, by the inductive hypothesis, and as Fig-
ure 19.2(c) shows, from left to right, the children of the root of Bk−1 are roots
of Bk−2, Bk−3, . . . , B0. WhenBk−1 is linked toBk−1, therefore, the children of
the resulting root are roots ofBk−1, Bk−2, . . . , B0.



19.1 Binomial trees and binomial heaps 459

Corollary 19.2
The maximum degree of any node in ann-node binomial tree is lgn.

Proof Immediate from properties 1 and 4 of Lemma 19.1.

The term “binomial tree” comes from property 3 of Lemma 19.1,since the
terms

(k
i

)
are the binomial coefficients. Exercise 19.1-3 gives further justification

for the term.

19.1.2 Binomial heaps

A binomial heapH is a set of binomial trees that satisfies the followingbinomial-
heap properties.

1. Each binomial tree inH obeys themin-heap property: the key of a node is
greater than or equal to the key of its parent. We say that eachsuch tree is
min-heap-ordered.

2. For any nonnegative integerk, there is at most one binomial tree inH whose
root has degreek.

The first property tells us that the root of a min-heap-ordered tree contains the
smallest key in the tree.

The second property implies that ann-node binomial heapH consists of at most
⌊lg n⌋ + 1 binomial trees. To see why, observe that the binary representation ofn
has⌊lg n⌋ + 1 bits, say〈b⌊lg n⌋, b⌊lg n⌋−1, . . . , b0〉, so thatn =

∑⌊lg n⌋
i=0 bi 2i . By

property 1 of Lemma 19.1, therefore, binomial treeBi appears inH if and only if
bit bi = 1. Thus, binomial heapH contains at most⌊lg n⌋ + 1 binomial trees.

Figure 19.3(a) shows a binomial heapH with 13 nodes. The binary represen-
tation of 13 is〈1101〉, andH consists of min-heap-ordered binomial treesB3, B2,
andB0, having 8, 4, and 1 nodes respectively, for a total of 13 nodes.

Representing binomial heaps

As shown in Figure 19.3(b), each binomial tree within a binomial heap is stored
in the left-child, right-sibling representation of Section 10.4. Each node has akey
field and any other satellite information required by the application. In addition,
each nodex contains pointersp[x] to its parent,child[x] to its leftmost child, and
sibling[x] to the sibling ofx immediately to its right. If nodex is a root, then
p[x] = NIL . If node x has no children, thenchild[x] = NIL , and if x is the
rightmost child of its parent, thensibling[x] = NIL . Each nodex also contains the
field degree[x], which is the number of children ofx.

As Figure 19.3 also shows, the roots of the binomial trees within a binomial
heap are organized in a linked list, which we refer to as theroot list. The degrees
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Figure 19.3 A binomial heapH with n = 13 nodes.(a) The heap consists of binomial treesB0, B2,
andB3, which have 1, 4, and 8 nodes respectively, totalingn = 13 nodes. Since each binomial tree
is min-heap-ordered, the key of any node is no less than the key of its parent. Also shown is the root
list, which is a linked list of roots in order of increasing degree.(b) A more detailed representation
of binomial heapH . Each binomial tree is stored in the left-child, right-sibling representation, and
each node stores its degree.

of the roots strictly increase as we traverse the root list. By the second binomial-
heap property, in ann-node binomial heap the degrees of the roots are a subset
of {0, 1, . . . , ⌊lg n⌋}. Thesibling field has a different meaning for roots than for
nonroots. Ifx is a root, thensibling[x] points to the next root in the root list. (As
usual,sibling[x] = NIL if x is the last root in the root list.)

A given binomial heapH is accessed by the fieldhead[H ], which is simply a
pointer to the first root in the root list ofH . If binomial heapH has no elements,
thenhead[H ] = NIL .
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Figure 19.4 The binomial treeB4 with nodes labeled in binary by a postorder walk.

Exercises

19.1-1
Suppose thatx is a node in a binomial tree within a binomial heap, and assume
thatsibling[x] 6= NIL . If x is not a root, how doesdegree[sibling[x]] compare to
degree[x]? How about ifx is a root?

19.1-2
If x is a nonroot node in a binomial tree within a binomial heap, how doesdegree[x]
compare todegree[ p[x]]?

19.1-3
Suppose we label the nodes of binomial treeBk in binary by a postorder walk, as
in Figure 19.4. Consider a nodex labeledl at depthi , and let j = k − i . Show
that x has j 1’s in its binary representation. How many binaryk-strings are there
that contain exactlyj 1’s? Show that the degree ofx is equal to the number of 1’s
to the right of the rightmost 0 in the binary representation of l .

19.2 Operations on binomial heaps

In this section, we show how to perform operations on binomial heaps in the time
bounds shown in Figure 19.1. We shall only show the upper bounds; the lower
bounds are left as Exercise 19.2-10.

Creating a new binomial heap

To make an empty binomial heap, the MAKE-BINOMIAL -HEAP procedure sim-
ply allocates and returns an objectH , wherehead[H ] = NIL . The running time
is 2(1).
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Finding the minimum key

The procedure BINOMIAL -HEAP-M INIMUM returns a pointer to the node with the
minimum key in ann-node binomial heapH . This implementation assumes that
there are no keys with value∞. (See Exercise 19.2-5.)

BINOMIAL -HEAP-M INIMUM (H )

1 y← NIL

2 x← head[H ]
3 min←∞
4 while x 6= NIL

5 do if key[x] < min
6 then min← key[x]
7 y← x
8 x← sibling[x]
9 return y

Since a binomial heap is min-heap-ordered, the minimum key must reside in a
root node. The BINOMIAL -HEAP-M INIMUM procedure checks all roots, which
number at most⌊lg n⌋ + 1, saving the current minimum inmin and a pointer to
the current minimum iny. When called on the binomial heap of Figure 19.3,
BINOMIAL -HEAP-M INIMUM returns a pointer to the node with key 1.

Because there are at most⌊lg n⌋ + 1 roots to check, the running time of
BINOMIAL -HEAP-M INIMUM is O(lg n).

Uniting two binomial heaps

The operation of uniting two binomial heaps is used as a subroutine by most of the
remaining operations. The BINOMIAL -HEAP-UNION procedure repeatedly links
binomial trees whose roots have the same degree. The following procedure links
the Bk−1 tree rooted at nodey to theBk−1 tree rooted at nodez; that is, it makesz
the parent ofy. Nodez thus becomes the root of aBk tree.

BINOMIAL -L INK (y, z)

1 p[y] ← z
2 sibling[y] ← child[z]
3 child[z]← y
4 degree[z]← degree[z] + 1

The BINOMIAL -L INK procedure makes nodey the new head of the linked list
of nodez’s children in O(1) time. It works because the left-child, right-sibling
representation of each binomial tree matches the ordering property of the tree: in
a Bk tree, the leftmost child of the root is the root of aBk−1 tree.
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The following procedure unites binomial heapsH1 and H2, returning the re-
sulting heap. It destroys the representations ofH1 and H2 in the process. Be-
sides BINOMIAL -L INK , the procedure uses an auxiliary procedure BINOMIAL -
HEAP-MERGE that merges the root lists ofH1 andH2 into a single linked list that
is sorted by degree into monotonically increasing order. The BINOMIAL -HEAP-
MERGE procedure, whose pseudocode we leave as Exercise 19.2-1, issimilar to
the MERGEprocedure in Section 2.3.1.

BINOMIAL -HEAP-UNION(H1, H2)

1 H ← MAKE-BINOMIAL -HEAP()

2 head[H ]← BINOMIAL -HEAP-MERGE(H1, H2)

3 free the objectsH1 andH2 but not the lists they point to
4 if head[H ] = NIL

5 then return H
6 prev-x← NIL

7 x← head[H ]
8 next-x← sibling[x]
9 while next-x 6= NIL

10 do if (degree[x] 6= degree[next-x]) or
(sibling[next-x] 6= NIL anddegree[sibling[next-x]] = degree[x])

11 then prev-x← x � Cases 1 and 2
12 x← next-x � Cases 1 and 2
13 else ifkey[x] ≤ key[next-x]
14 then sibling[x] ← sibling[next-x] � Case 3
15 BINOMIAL -L INK (next-x, x) � Case 3
16 else ifprev-x = NIL � Case 4
17 then head[H ] ← next-x � Case 4
18 else sibling[prev-x]← next-x � Case 4
19 BINOMIAL -L INK (x, next-x) � Case 4
20 x← next-x � Case 4
21 next-x← sibling[x]
22 return H

Figure 19.5 shows an example of BINOMIAL -HEAP-UNION in which all four cases
given in the pseudocode occur.

The BINOMIAL -HEAP-UNION procedure has two phases. The first phase, per-
formed by the call of BINOMIAL -HEAP-MERGE, merges the root lists of binomial
heapsH1 andH2 into a single linked listH that is sorted by degree into monotoni-
cally increasing order. There might be as many as two roots (but no more) of each
degree, however, so the second phase links roots of equal degree until at most one
root remains of each degree. Because the linked listH is sorted by degree, we can
perform all the link operations quickly.
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Figure 19.5 The execution of BINOMIAL -HEAP-UNION. (a) Binomial heapsH1 andH2. (b) Bi-
nomial heapH is the output of BINOMIAL -HEAP-MERGE(H1, H2). Initially, x is the first root on
the root list ofH . Because bothx andnext-x have degree 0 andkey[x] < key[next-x], case 3 applies.
(c) After the link occurs,x is the first of three roots with the same degree, so case 2 applies.(d) After
all the pointers move down one position in the root list, case4 applies, sincex is the first of two
roots of equal degree.(e) After the link occurs, case 3 applies.(f) After another link, case 1 applies,
becausex has degree 3 andnext-x has degree 4. This iteration of thewhile loop is the last, because
after the pointers move down one position in the root list,next-x = NIL .

In detail, the procedure works as follows. Lines 1–3 start bymerging the root
lists of binomial heapsH1 and H2 into a single root listH . The root lists ofH1

andH2 are sorted by strictly increasing degree, and BINOMIAL -HEAP-MERGE re-
turns a root listH that is sorted by monotonically increasing degree. If the root lists
of H1 and H2 havem roots altogether, BINOMIAL -HEAP-MERGE runs in O(m)

time by repeatedly examining the roots at the heads of the tworoot lists and ap-
pending the root with the lower degree to the output root list, removing it from its
input root list in the process.
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The BINOMIAL -HEAP-UNION procedure next initializes some pointers into the
root list of H . First, it simply returns in lines 4–5 if it happens to be uniting two
empty binomial heaps. From line 6 on, therefore, we know thatH has at least one
root. Throughout the procedure, we maintain three pointersinto the root list:

• x points to the root currently being examined,

• prev-x points to the root precedingx on the root list:sibling[prev-x] = x (since
initially x has no predecessor, we start withprev-x set toNIL ), and

• next-x points to the root followingx on the root list:sibling[x] = next-x.

Initially, there are at most two roots on the root listH of a given degree: because
H1 andH2 were binomial heaps, they each had at most one root of a given degree.
Moreover, BINOMIAL -HEAP-MERGE guarantees us that if two roots inH have
the same degree, they are adjacent in the root list.

In fact, during the execution of BINOMIAL -HEAP-UNION, there may be three
roots of a given degree appearing on the root listH at some time. We shall see
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in a moment how this situation could occur. At each iterationof thewhile loop of
lines 9–21, therefore, we decide whether to linkx andnext-x based on their degrees
and possibly the degree ofsibling[next-x]. An invariant of the loop is that each time
we start the body of the loop, bothx andnext-x are non-NIL . (See Exercise 19.2-4
for a precise loop invariant.)

Case 1, shown in Figure 19.6(a), occurs whendegree[x] 6= degree[next-x], that
is, whenx is the root of aBk-tree andnext-x is the root of aBl -tree for somel > k.
Lines 11–12 handle this case. We don’t linkx andnext-x, so we simply march the
pointers one position farther down the list. Updatingnext-x to point to the node
following the new nodex is handled in line 21, which is common to every case.

Case 2, shown in Figure 19.6(b), occurs whenx is the first of three roots of equal
degree, that is, when

degree[x] = degree[next-x] = degree[sibling[next-x]] .

We handle this case in the same manner as case 1: we just march the pointers one
position farther down the list. The next iteration will execute either case 3 or case 4
to combine the second and third of the three equal-degree roots. Line 10 tests for
both cases 1 and 2, and lines 11–12 handle both cases.

Cases 3 and 4 occur whenx is the first of two roots of equal degree, that is, when

degree[x] = degree[next-x] 6= degree[sibling[next-x]] .

These cases may occur in any iteration, but one of them alwaysoccurs immediately
following case 2. In cases 3 and 4, we linkx and next-x. The two cases are
distinguished by whetherx or next-x has the smaller key, which determines the
node that will be the root after the two are linked.

In case 3, shown in Figure 19.6(c),key[x] ≤ key[next-x], sonext-x is linked tox.
Line 14 removesnext-x from the root list, and line 15 makesnext-x the leftmost
child of x.

In case 4, shown in Figure 19.6(d),next-x has the smaller key, sox is linked to
next-x. Lines 16–18 removex from the root list; there are two cases depending
on whetherx is the first root on the list (line 17) or is not (line 18). Line 19 then
makesx the leftmost child ofnext-x, and line 20 updatesx for the next iteration.

Following either case 3 or case 4, the setup for the next iteration of thewhile
loop is the same. We have just linked twoBk-trees to form aBk+1-tree, whichx
now points to. There were already zero, one, or two otherBk+1-trees on the root
list resulting from BINOMIAL -HEAP-MERGE, sox is now the first of either one,
two, or threeBk+1-trees on the root list. Ifx is the only one, then we enter case 1
in the next iteration:degree[x] 6= degree[next-x]. If x is the first of two, then we
enter either case 3 or case 4 in the next iteration. It is whenx is the first of three
that we enter case 2 in the next iteration.

The running time of BINOMIAL -HEAP-UNION is O(lg n), wheren is the total
number of nodes in binomial heapsH1 andH2. We can see this as follows. LetH1
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Figure 19.6 The four cases that occur in BINOMIAL -HEAP-UNION. Labelsa, b, c, andd serve
only to identify the roots involved; they do not indicate thedegrees or keys of these roots. In
each case,x is the root of aBk-tree andl > k. (a) Case 1:degree[x] 6= degree[next-x]. The
pointers move one position farther down the root list.(b) Case 2:degree[x] = degree[next-x] =
degree[sibling[next-x]]. Again, the pointers move one position farther down the list, and the
next iteration executes either case 3 or case 4.(c) Case 3: degree[x] = degree[next-x] 6=
degree[sibling[next-x]] and key[x] ≤ key[next-x]. We removenext-x from the root list and link it
to x, creating aBk+1-tree. (d) Case 4:degree[x] = degree[next-x] 6= degree[sibling[next-x]] and
key[next-x] ≤ key[x]. We removex from the root list and link it tonext-x, again creating aBk+1-tree.

containn1 nodes andH2 containn2 nodes, so thatn = n1+n2. ThenH1 contains at
most⌊lg n1⌋+1 roots andH2 contains at most⌊lg n2⌋+1 roots, and soH contains at
most⌊lg n1⌋+⌊lg n2⌋+2≤ 2⌊lg n⌋+2= O(lg n) roots immediately after the call
of BINOMIAL -HEAP-MERGE. The time to perform BINOMIAL -HEAP-MERGE is
thus O(lg n). Each iteration of thewhile loop takesO(1) time, and there are at
most ⌊lg n1⌋ + ⌊lg n2⌋ + 2 iterations because each iteration either advances the
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pointers one position down the root list ofH or removes a root from the root list.
The total time is thusO(lg n).

Inserting a node

The following procedure inserts nodex into binomial heapH , assuming thatx has
already been allocated andkey[x] has already been filled in.

BINOMIAL -HEAP-INSERT(H, x)

1 H ′← MAKE-BINOMIAL -HEAP()

2 p[x] ← NIL

3 child[x] ← NIL

4 sibling[x] ← NIL

5 degree[x] ← 0
6 head[H ′]← x
7 H ← BINOMIAL -HEAP-UNION(H, H ′)

The procedure simply makes a one-node binomial heapH ′ in O(1) time and unites
it with then-node binomial heapH in O(lg n) time. The call to BINOMIAL -HEAP-
UNION takes care of freeing the temporary binomial heapH ′. (A direct implemen-
tation that does not call BINOMIAL -HEAP-UNION is given as Exercise 19.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimum key from binomial
heapH and returns a pointer to the extracted node.

BINOMIAL -HEAP-EXTRACT-M IN (H )

1 find the rootx with the minimum key in the root list ofH ,
and removex from the root list ofH

2 H ′← MAKE-BINOMIAL -HEAP()

3 reverse the order of the linked list ofx’s children,
and sethead[H ′] to point to the head of the resulting list

4 H ← BINOMIAL -HEAP-UNION(H, H ′)
5 return x

This procedure works as shown in Figure 19.7. The input binomial heapH is
shown in Figure 19.7(a). Figure 19.7(b) shows the situationafter line 1: the rootx
with the minimum key has been removed from the root list ofH . If x is the root
of a Bk-tree, then by property 4 of Lemma 19.1,x’s children, from left to right,
are roots ofBk−1-, Bk−2-, . . . , B0-trees. Figure 19.7(c) shows that by reversing the
list of x’s children in line 3, we have a binomial heapH ′ that contains every node
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Figure 19.7 The action of BINOMIAL -HEAP-EXTRACT-M IN. (a) A binomial heapH . (b) The
root x with minimum key is removed from the root list ofH . (c) The linked list ofx’s children is
reversed, giving another binomial heapH ′. (d) The result of unitingH andH ′.

in x’s tree except forx itself. Becausex’s tree was removed fromH in line 1, the
binomial heap that results from unitingH andH ′ in line 4, shown in Figure 19.7(d),
contains all the nodes originally inH except forx. Finally, line 5 returnsx.

Since each of lines 1–4 takesO(lg n) time if H hasn nodes, BINOMIAL -HEAP-
EXTRACT-M IN runs inO(lg n) time.
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Decreasing a key

The following procedure decreases the key of a nodex in a binomial heapH to a
new valuek. It signals an error ifk is greater thanx’s current key.

BINOMIAL -HEAP-DECREASE-KEY(H, x, k)

1 if k > key[x]
2 then error “new key is greater than current key”
3 key[x] ← k
4 y← x
5 z← p[y]
6 while z 6= NIL andkey[y] < key[z]
7 do exchangekey[y] ↔ key[z]
8 � If y andz have satellite fields, exchange them, too.
9 y← z

10 z← p[y]

As shown in Figure 19.8, this procedure decreases a key in thesame manner
as in a binary min-heap: by “bubbling up” the key in the heap. After ensuring
that the new key is in fact no greater than the current key and then assigning the
new key tox, the procedure goes up the tree, withy initially pointing to nodex.
In each iteration of thewhile loop of lines 6–10,key[y] is checked against the
key of y’s parentz. If y is the root orkey[y] ≥ key[z], the binomial tree is now
min-heap-ordered. Otherwise, nodey violates min-heap ordering, and so its key is
exchanged with the key of its parentz, along with any other satellite information.
The procedure then setsy to z, going up one level in the tree, and continues with
the next iteration.

The BINOMIAL -HEAP-DECREASE-KEY procedure takesO(lg n) time. By
property 2 of Lemma 19.1, the maximum depth ofx is ⌊lg n⌋, so thewhile loop of
lines 6–10 iterates at most⌊lg n⌋ times.

Deleting a key

It is easy to delete a nodex’s key and satellite information from binomial heapH
in O(lg n) time. The following implementation assumes that no node currently in
the binomial heap has a key of−∞.

BINOMIAL -HEAP-DELETE(H, x)

1 BINOMIAL -HEAP-DECREASE-KEY(H, x,−∞)

2 BINOMIAL -HEAP-EXTRACT-M IN (H )

The BINOMIAL -HEAP-DELETE procedure makes nodex have the unique mini-
mum key in the entire binomial heap by giving it a key of−∞. (Exercise 19.2-6
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Figure 19.8 The action of BINOMIAL -HEAP-DECREASE-KEY. (a) The situation just before line 6
of the first iteration of thewhile loop. Nodey has had its key decreased to 7, which is less than the
key of y’s parentz. (b) The keys of the two nodes are exchanged, and the situation just before line 6
of the second iteration is shown. Pointersy andz have moved up one level in the tree, but min-heap
order is still violated.(c) After another exchange and moving pointersy andz up one more level, we
find that min-heap order is satisfied, so thewhile loop terminates.

deals with the situation in which−∞ cannot appear as a key, even temporarily.) It
then bubbles this key and the associated satellite information up to a root by calling
BINOMIAL -HEAP-DECREASE-KEY. This root is then removed fromH by a call
of BINOMIAL -HEAP-EXTRACT-M IN.

The BINOMIAL -HEAP-DELETE procedure takesO(lg n) time.

Exercises

19.2-1
Write pseudocode for BINOMIAL -HEAP-MERGE.
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19.2-2
Show the binomial heap that results when a node with key 24 is inserted into the
binomial heap shown in Figure 19.7(d).

19.2-3
Show the binomial heap that results when the node with key 28 is deleted from the
binomial heap shown in Figure 19.8(c).

19.2-4
Argue the correctness of BINOMIAL -HEAP-UNION using the following loop in-
variant:

At the start of each iteration of thewhile loop of lines 9–21,x points to a
root that is one of the following:

• the only root of its degree,
• the first of the only two roots of its degree, or
• the first or second of the only three roots of its degree.

Moreover, all roots precedingx’s predecessor on the root list have unique
degrees on the root list, and ifx’s predecessor has a degree different from
that of x, its degree on the root list is unique, too. Finally, node degrees
monotonically increase as we traverse the root list.

19.2-5
Explain why the BINOMIAL -HEAP-M INIMUM procedure might not work correctly
if keys can have the value∞. Rewrite the pseudocode to make it work correctly in
such cases.

19.2-6
Suppose there is no way to represent the key−∞. Rewrite the BINOMIAL -HEAP-
DELETE procedure to work correctly in this situation. It should still take O(lg n)

time.

19.2-7
Discuss the relationship between inserting into a binomialheap and incrementing a
binary number and the relationship between uniting two binomial heaps and adding
two binary numbers.

19.2-8
In light of Exercise 19.2-7, rewrite BINOMIAL -HEAP-INSERT to insert a node di-
rectly into a binomial heap without calling BINOMIAL -HEAP-UNION.
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19.2-9
Show that if root lists are kept in strictly decreasing orderby degree (instead of
strictly increasing order), each of the binomial heap operations can be implemented
without changing its asymptotic running time.

19.2-10
Find inputs that cause BINOMIAL -HEAP-EXTRACT-M IN, BINOMIAL -HEAP-
DECREASE-KEY, and BINOMIAL -HEAP-DELETE to run in �(lg n) time. Ex-
plain why the worst-case running times of BINOMIAL -HEAP-INSERT, BINOMIAL -
HEAP-M INIMUM , and BINOMIAL -HEAP-UNION are

∞
�(lg n) but not �(lg n).

(See Problem 3-5.)

Problems

19-1 2-3-4 heaps
Chapter 18 introduced the 2-3-4 tree, in which every internal node (other than pos-
sibly the root) has two, three, or four children and all leaves have the same depth. In
this problem, we shall implement2-3-4 heaps, which support the mergeable-heap
operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways. In 2-3-4 heaps,
only leaves store keys, and each leafx stores exactly one key in the fieldkey[x].
There is no particular ordering of the keys in the leaves; that is, from left to right,
the keys may be in any order. Each internal nodex contains a valuesmall[x] that
is equal to the smallest key stored in any leaf in the subtree rooted atx. The rootr
contains a fieldheight[r ] that is the height of the tree. Finally, 2-3-4 heaps are
intended to be kept in main memory, so that disk reads and writes are not needed.

Implement the following 2-3-4 heap operations. Each of the operations in
parts (a)–(e) should run inO(lg n) time on a 2-3-4 heap withn elements. The
UNION operation in part (f) should run inO(lg n) time, wheren is the number of
elements in the two input heaps.

a. M INIMUM , which returns a pointer to the leaf with the smallest key.

b. DECREASE-KEY, which decreases the key of a given leafx to a given value
k ≤ key[x].

c. INSERT, which inserts leafx with key k.

d. DELETE, which deletes a given leafx.

e. EXTRACT-M IN, which extracts the leaf with the smallest key.
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f. UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 heapand de-
stroying the input heaps.

19-2 Minimum-spanning-tree algorithm using binomial heaps
Chapter 23 presents two algorithms to solve the problem of finding a minimum
spanning tree of an undirected graph. Here, we shall see how binomial heaps can
be used to devise a different minimum-spanning-tree algorithm.

We are given a connected, undirected graphG = (V, E) with a weight function
w : E→ R. We callw(u, v) the weight of edge(u, v). We wish to find a minimum
spanning tree forG: an acyclic subsetT ⊆ E that connects all the vertices inV
and whose total weight

w(T) =
∑

(u,v)∈T

w(u, v)

is minimized.
The following pseudocode, which can be proven correct usingtechniques from

Section 23.1, constructs a minimum spanning treeT . It maintains a partition{Vi }
of the vertices ofV and, with each setVi , a set

Ei ⊆ {(u, v) : u ∈ Vi or v ∈ Vi }

of edges incident on vertices inVi .

MST(G)

1 T ← ∅
2 for each vertexvi ∈ V [G]
3 do Vi ← {vi }
4 Ei ← {(vi , v) ∈ E[G]}
5 while there is more than one setVi

6 do choose any setVi

7 extract the minimum-weight edge(u, v) from Ei

8 assume without loss of generality thatu ∈ Vi andv ∈ Vj

9 if i 6= j
10 then T ← T ∪ {(u, v)}
11 Vi ← Vi ∪ Vj , destroyingVj

12 Ei ← Ei ∪ E j

Describe how to implement this algorithm using binomial heaps to manage the
vertex and edge sets. Do you need to change the representation of a binomial
heap? Do you need to add operations beyond the mergeable-heap operations given
in Figure 19.1? Give the running time of your implementation.
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Chapter notes

Binomial heaps were introduced in 1978 by Vuillemin [307]. Brown [49, 50] stud-
ied their properties in detail.



20 Fibonacci Heaps

In Chapter 19, we saw how binomial heaps support inO(lg n) worst-case time the
mergeable-heap operations INSERT, M INIMUM , EXTRACT-M IN, and UNION, plus
the operations DECREASE-KEY and DELETE. In this chapter, we shall examine
Fibonacci heaps, which support the same operations but havethe advantage that
operations that do not involve deleting an element run inO(1) amortized time.

From a theoretical standpoint, Fibonacci heaps are especially desirable when the
number of EXTRACT-M IN and DELETE operations is small relative to the number
of other operations performed. This situation arises in many applications. For ex-
ample, some algorithms for graph problems may call DECREASE-KEY once per
edge. For dense graphs, which have many edges, theO(1) amortized time of each
call of DECREASE-KEY adds up to a big improvement over the2(lg n) worst-case
time of binary or binomial heaps. Fast algorithms for problems such as comput-
ing minimum spanning trees (Chapter 23) and finding single-source shortest paths
(Chapter 24) make essential use of Fibonacci heaps.

From a practical point of view, however, the constant factors and programming
complexity of Fibonacci heaps make them less desirable thanordinary binary (or
k-ary) heaps for most applications. Thus, Fibonacci heaps are predominantly of
theoretical interest. If a much simpler data structure withthe same amortized time
bounds as Fibonacci heaps were developed, it would be of practical use as well.

Like a binomial heap, a Fibonacci heap is a collection of trees. Fibonacci heaps,
in fact, are loosely based on binomial heaps. If neither DECREASE-KEY nor
DELETE is ever invoked on a Fibonacci heap, each tree in the heap is like a bi-
nomial tree. Fibonacci heaps have a more relaxed structure than binomial heaps,
however, allowing for improved asymptotic time bounds. Work that maintains the
structure can be delayed until it is convenient to perform.

Like the dynamic tables of Section 17.4, Fibonacci heaps offer a good example
of a data structure designed with amortized analysis in mind. The intuition and
analyses of Fibonacci heap operations in the remainder of this chapter rely heavily
on the potential method of Section 17.3.
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The exposition in this chapter assumes that you have read Chapter 19 on bino-
mial heaps. The specifications for the operations appear in that chapter, as does the
table in Figure 19.1, which summarizes the time bounds for operations on binary
heaps, binomial heaps, and Fibonacci heaps. Our presentation of the structure of
Fibonacci heaps relies on that of binomial-heap structure,and some of the oper-
ations performed on Fibonacci heaps are similar to those performed on binomial
heaps.

Like binomial heaps, Fibonacci heaps are not designed to give efficient support
to the operation SEARCH; operations that refer to a given node therefore require
a pointer to that node as part of their input. When we use a Fibonacci heap in
an application, we often store a handle to the correspondingapplication object in
each Fibonacci-heap element, as well as a handle to corresponding Fibonacci-heap
element in each application object.

Section 20.1 defines Fibonacci heaps, discusses their representation, and
presents the potential function used for their amortized analysis. Section 20.2
shows how to implement the mergeable-heap operations and achieve the amortized
time bounds shown in Figure 19.1. The remaining two operations, DECREASE-
KEY and DELETE, are presented in Section 20.3. Finally, Section 20.4 finishes off
a key part of the analysis and also explains the curious name of the data structure.

20.1 Structure of Fibonacci heaps

Like a binomial heap, aFibonacci heapis a collection of min-heap-ordered trees.
The trees in a Fibonacci heap are not constrained to be binomial trees, however.
Figure 20.1(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, trees within Fibonacci
heaps are rooted but unordered. As Figure 20.1(b) shows, each nodex contains
a pointerp[x] to its parent and a pointerchild[x] to any one of its children. The
children of x are linked together in a circular, doubly linked list, whichwe call
the child list of x. Each childy in a child list has pointersleft[y] and right[y]
that point toy’s left and right siblings, respectively. If nodey is an only child,
then left[y] = right[y] = y. The order in which siblings appear in a child list is
arbitrary.

Circular, doubly linked lists (see Section 10.2) have two advantages for use in
Fibonacci heaps. First, we can remove a node from a circular,doubly linked list
in O(1) time. Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list inO(1) time. In the descriptions
of Fibonacci heap operations, we shall refer to these operations informally, letting
the reader fill in the details of their implementations.
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Figure 20.1 (a)A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The
dashed line indicates the root list. The minimum node of the heap is the node containing the key 3.
The three marked nodes are blackened. The potential of this particular Fibonacci heap is 5+2·3 = 11.
(b) A more complete representation showing pointersp (up arrows),child (down arrows), andleft
andright (sideways arrows). These details are omitted in the remaining figures in this chapter, since
all the information shown here can be determined from what appears in part (a).

Two other fields in each node will be of use. The number of children in the child
list of nodex is stored indegree[x]. The boolean-valued fieldmark[x] indicates
whether nodex has lost a child since the last timex was made the child of another
node. Newly created nodes are unmarked, and a nodex becomes unmarked when-
ever it is made the child of another node. Until we look at the DECREASE-KEY

operation in Section 20.3, we will just set allmarkfields toFALSE.
A given Fibonacci heapH is accessed by a pointermin[H ] to the root of a tree

containing a minimum key; this node is called theminimum nodeof the Fibonacci
heap. If a Fibonacci heapH is empty, thenmin[H ] = NIL .

The roots of all the trees in a Fibonacci heap are linked together using their
left andright pointers into a circular, doubly linked list called theroot list of the
Fibonacci heap. The pointermin[H ] thus points to the node in the root list whose
key is minimum. The order of the trees within a root list is arbitrary.

We rely on one other attribute for a Fibonacci heapH : the number of nodes
currently inH is kept inn[H ].
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Potential function

As mentioned, we shall use the potential method of Section 17.3 to analyze the
performance of Fibonacci heap operations. For a given Fibonacci heapH , we
indicate byt (H ) the number of trees in the root list ofH and bym(H ) the number
of marked nodes inH . The potential of Fibonacci heapH is then defined by

8(H ) = t (H )+ 2m(H ) . (20.1)

(We will gain some intuition for this potential function in Section 20.3.) For exam-
ple, the potential of the Fibonacci heap shown in Figure 20.1is 5+2 ·3 = 11. The
potential of a set of Fibonacci heaps is the sum of the potentials of its constituent
Fibonacci heaps. We shall assume that a unit of potential canpay for a constant
amount of work, where the constant is sufficiently large to cover the cost of any of
the specific constant-time pieces of work that we might encounter.

We assume that a Fibonacci heap application begins with no heaps. The initial
potential, therefore, is 0, and by equation (20.1), the potential is nonnegative at all
subsequent times. From equation (17.3), an upper bound on the total amortized
cost is thus an upper bound on the total actual cost for the sequence of operations.

Maximum degree

The amortized analyses we shall perform in the remaining sections of this chapter
assume that there is a known upper boundD(n) on the maximum degree of any
node in ann-node Fibonacci heap. Exercise 20.2-3 shows that when only the
mergeable-heap operations are supported,D(n) ≤ ⌊lg n⌋. In Section 20.3, we
shall show that when we support DECREASE-KEY and DELETE as well,D(n) =
O(lg n).

20.2 Mergeable-heap operations

In this section, we describe and analyze the mergeable-heapoperations as imple-
mented for Fibonacci heaps. If only these operations—MAKE-HEAP, INSERT,
M INIMUM , EXTRACT-M IN, and UNION—are to be supported, each Fibonacci
heap is simply a collection of “unordered” binomial trees. An unordered bino-
mial tree is like a binomial tree, and it, too, is defined recursively. The unordered
binomial treeU0 consists of a single node, and an unordered binomial treeUk con-
sists of two unordered binomial treesUk−1 for which the root of one is made into
anychild of the root of the other. Lemma 19.1, which gives properties of binomial
trees, holds for unordered binomial trees as well, but with the following variation
on property 4 (see Exercise 20.2-2):
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4′. For the unordered binomial treeUk, the root has degreek, which is greater
than that of any other node. The children of the root are rootsof subtrees
U0, U1, . . . , Uk−1 in some order.

Thus, if ann-node Fibonacci heap is a collection of unordered binomial trees, then
D(n) = lg n.

The key idea in the mergeable-heap operations on Fibonacci heaps is to delay
work as long as possible. There is a performance trade-off among implementa-
tions of the various operations. If the number of trees in a Fibonacci heap is small,
then during an EXTRACT-M IN operation we can quickly determine which of the
remaining nodes becomes the new minimum node. However, as wesaw with bi-
nomial heaps in Exercise 19.2-10, we pay a price for ensuringthat the number of
trees is small: it can take up to�(lg n) time to insert a node into a binomial heap
or to unite two binomial heaps. As we shall see, we do not attempt to consolidate
trees in a Fibonacci heap when we insert a new node or unite twoheaps. We save
the consolidation for the EXTRACT-M IN operation, which is when we really need
to find the new minimum node.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure allocates and
returns the Fibonacci heap objectH , wheren[H ] = 0 andmin[H ] = NIL ; there
are no trees inH . Becauset (H ) = 0 andm(H ) = 0, the potential of the empty
Fibonacci heap is8(H ) = 0. The amortized cost of MAKE-FIB-HEAP is thus
equal to itsO(1) actual cost.

Inserting a node

The following procedure inserts nodex into Fibonacci heapH , assuming that the
node has already been allocated and thatkey[x] has already been filled in.

FIB-HEAP-INSERT(H, x)

1 degree[x] ← 0
2 p[x] ← NIL

3 child[x] ← NIL

4 left[x] ← x
5 right[x] ← x
6 mark[x] ← FALSE

7 concatenate the root list containingx with root list H
8 if min[H ] = NIL or key[x] < key[min[H ]]
9 then min[H ]← x

10 n[H ]← n[H ] + 1
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Figure 20.2 Inserting a node into a Fibonacci heap.(a) A Fibonacci heapH . (b) Fibonacci heapH
after the node with key 21 has been inserted. The node becomesits own min-heap-ordered tree and
is then added to the root list, becoming the left sibling of the root.

After lines 1–6 initialize the structural fields of nodex, making it its own circular,
doubly linked list, line 7 addsx to the root list ofH in O(1) actual time. Thus,
nodex becomes a single-node min-heap-ordered tree, and thus an unordered bino-
mial tree, in the Fibonacci heap. It has no children and is unmarked. Lines 8–9 then
update the pointer to the minimum node of Fibonacci heapH if necessary. Finally,
line 10 incrementsn[H ] to reflect the addition of the new node. Figure 20.2 shows
a node with key 21 inserted into the Fibonacci heap of Figure 20.1.

Unlike the BINOMIAL -HEAP-INSERT procedure, FIB-HEAP-INSERT makes no
attempt to consolidate the trees within the Fibonacci heap.If k consecutive FIB-
HEAP-INSERT operations occur, thenk single-node trees are added to the root list.

To determine the amortized cost of FIB-HEAP-INSERT, let H be the input Fi-
bonacci heap andH ′ be the resulting Fibonacci heap. Then,t (H ′) = t (H )+1 and
m(H ′) = m(H ), and the increase in potential is

((t (H )+ 1)+ 2m(H ))− (t (H )+ 2m(H )) = 1 .

Since the actual cost isO(1), the amortized cost isO(1)+ 1= O(1).

Finding the minimum node

The minimum node of a Fibonacci heapH is given by the pointermin[H ], so we
can find the minimum node inO(1) actual time. Because the potential ofH does
not change, the amortized cost of this operation is equal to its O(1) actual cost.

Uniting two Fibonacci heaps

The following procedure unites Fibonacci heapsH1 andH2, destroyingH1 andH2

in the process. It simply concatenates the root lists ofH1 and H2 and then deter-
mines the new minimum node.
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FIB-HEAP-UNION(H1, H2)

1 H ← MAKE-FIB-HEAP()

2 min[H ]← min[H1]
3 concatenate the root list ofH2 with the root list ofH
4 if (min[H1] = NIL ) or (min[H2] 6= NIL and min[H2] < min[H1])
5 then min[H ] ← min[H2]
6 n[H ]← n[H1] + n[H2]
7 free the objectsH1 andH2

8 return H

Lines 1–3 concatenate the root lists ofH1 and H2 into a new root listH . Lines
2, 4, and 5 set the minimum node ofH , and line 6 setsn[H ] to the total number
of nodes. The Fibonacci heap objectsH1 and H2 are freed in line 7, and line 8
returns the resulting Fibonacci heapH . As in the FIB-HEAP-INSERT procedure,
no consolidation of trees occurs.

The change in potential is

8(H )− (8(H1)+8(H2))

= (t (H )+ 2m(H ))− ((t (H1)+ 2m(H1))+ (t (H2)+ 2m(H2)))

= 0 ,

becauset (H ) = t (H1)+ t (H2) andm(H ) = m(H1)+m(H2). The amortized cost
of FIB-HEAP-UNION is therefore equal to itsO(1) actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most complicated of the oper-
ations presented in this section. It is also where the delayed work of consolidating
trees in the root list finally occurs. The following pseudocode extracts the mini-
mum node. The code assumes for convenience that when a node isremoved from
a linked list, pointers remaining in the list are updated, but pointers in the extracted
node are left unchanged. It also uses the auxiliary procedure CONSOLIDATE, which
will be presented shortly.
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FIB-HEAP-EXTRACT-M IN (H )

1 z← min[H ]
2 if z 6= NIL

3 then for each childx of z
4 do addx to the root list ofH
5 p[x] ← NIL

6 removez from the root list ofH
7 if z= right[z]
8 then min[H ]← NIL

9 else min[H ]← right[z]
10 CONSOLIDATE(H )

11 n[H ]← n[H ] − 1
12 return z

As shown in Figure 20.3, FIB-HEAP-EXTRACT-M IN works by first making a root
out of each of the minimum node’s children and removing the minimum node from
the root list. It then consolidates the root list by linking roots of equal degree until
at most one root remains of each degree.

We start in line 1 by saving a pointerz to the minimum node; this pointer is
returned at the end. Ifz = NIL , then Fibonacci heapH is already empty and
we are done. Otherwise, as in the BINOMIAL -HEAP-EXTRACT-M IN procedure,
we delete nodez from H by making all ofz’s children roots ofH in lines 3–5
(putting them into the root list) and removingz from the root list in line 6. If
z = right[z] after line 6, thenz was the only node on the root list and it had no
children, so all that remains is to make the Fibonacci heap empty in line 8 before
returning z. Otherwise, we set the pointermin[H ] into the root list to point to
a node other thanz (in this case,right[z]), which is not necessarily going to be
the new minimum node when FIB-HEAP-EXTRACT-M IN is done. Figure 20.3(b)
shows the Fibonacci heap of Figure 20.3(a) after line 9 has been performed.

The next step, in which we reduce the number of trees in the Fibonacci heap, is
consolidatingthe root list ofH ; this is performed by the call CONSOLIDATE(H ).
Consolidating the root list consists of repeatedly executing the following steps until
every root in the root list has a distinctdegreevalue.

1. Find two rootsx and y in the root list with the same degree, wherekey[x] ≤
key[y].

2. Link y to x: removey from the root list, and makey a child of x. This oper-
ation is performed by the FIB-HEAP-L INK procedure. The fielddegree[x] is
incremented, and the mark ony, if any, is cleared.

The procedure CONSOLIDATE uses an auxiliary arrayA[0 . . D(n[H ])]; if
A[i ] = y, theny is currently a root withdegree[y] = i .
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Figure 20.3 The action of FIB-HEAP-EXTRACT-M IN. (a) A Fibonacci heapH . (b) The situation
after the minimum nodez is removed from the root list and its children are added to theroot list.
(c)–(e)The arrayA and the trees after each of the first three iterations of thefor loop of lines 3–13 of
the procedure CONSOLIDATE. The root list is processed by starting at the node pointed toby min[H ]
and following right pointers. Each part shows the values ofw and x at the end of an iteration.
(f)–(h) The next iteration of thefor loop, with the values ofw and x shown at the end of each
iteration of thewhile loop of lines 6–12. Part (f) shows the situation after the first time through the
while loop. The node with key 23 has been linked to the node with key 7, which is now pointed to
by x. In part (g), the node with key 17 has been linked to the node with key 7, which is still pointed
to by x. In part (h), the node with key 24 has been linked to the node with key 7. Since no node
was previously pointed to byA[3], at the end of thefor loop iteration,A[3] is set to point to the
root of the resulting tree.(i)–(l) The situation after each of the next four iterations of thefor loop.
(m) Fibonacci heapH after reconstruction of the root list from the arrayA and determination of the
newmin[H ] pointer.
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CONSOLIDATE(H )

1 for i ← 0 to D(n[H ])
2 do A[i ] ← NIL

3 for each nodew in the root list ofH
4 do x← w

5 d← degree[x]
6 while A[d] 6= NIL

7 do y← A[d] � Another node with the same degree asx.
8 if key[x] > key[y]
9 then exchangex ↔ y

10 FIB-HEAP-L INK (H, y, x)

11 A[d] ← NIL

12 d← d + 1
13 A[d] ← x
14 min[H ] ← NIL

15 for i ← 0 to D(n[H ])
16 do if A[i ] 6= NIL

17 then addA[i ] to the root list ofH
18 if min[H ] = NIL or key[ A[i ]] < key[min[H ]]
19 then min[H ] ← A[i ]

FIB-HEAP-L INK (H, y, x)

1 removey from the root list ofH
2 makey a child ofx, incrementingdegree[x]
3 mark[y] ← FALSE

In detail, the CONSOLIDATE procedure works as follows. Lines 1–2 initializeA
by making each entryNIL . Thefor loop of lines 3–13 processes each rootw in the
root list. After processing each rootw, it ends up in a tree rooted at some nodex,
which may or may not be identical tow. Of the processed roots, no others will
have the same degree asx, and so we will set array entryA[degree[x]] to point
to x. When thisfor loop terminates, at most one root of each degree will remain,
and the arrayA will point to each remaining root.

Thewhile loop of lines 6–12 repeatedly links the rootx of the tree containing
nodew to another tree whose root has the same degree asx, until no other root has
the same degree. Thiswhile loop maintains the following invariant:

At the start of each iteration of thewhile loop,d = degree[x].

We use this loop invariant as follows:

Initialization: Line 5 ensures that the loop invariant holds the first time we enter
the loop.
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Maintenance: In each iteration of thewhile loop, A[d] points to some rooty.
Becaused = degree[x] = degree[y], we want to linkx and y. Whichever of
x and y has the smaller key becomes the parent of the other as a resultof the
link operation, and so lines 8–9 exchange the pointers tox andy if necessary.
Next, we link y to x by the call FIB-HEAP-L INK (H, y, x) in line 10. This call
incrementsdegree[x] but leavesdegree[y] asd. Because nodey is no longer a
root, the pointer to it in arrayA is removed in line 11. Because the call of FIB-
HEAP-L INK increments the value ofdegree[x], line 12 restores the invariant
thatd = degree[x].

Termination: We repeat thewhile loop until A[d] = NIL , in which case there is
no other root with the same degree asx.

After thewhile loop terminates, we setA[d] to x in line 13 and perform the next
iteration of thefor loop.

Figures 20.3(c)–(e) show the arrayA and the resulting trees after the first three
iterations of thefor loop of lines 3–13. In the next iteration of thefor loop, three
links occur; their results are shown in Figures 20.3(f)–(h). Figures 20.3(i)–(l) show
the result of the next four iterations of thefor loop.

All that remains is to clean up. Once thefor loop of lines 3–13 completes,
line 14 empties the root list, and lines 15–19 reconstruct itfrom the arrayA. The
resulting Fibonacci heap is shown in Figure 20.3(m). After consolidating the root
list, FIB-HEAP-EXTRACT-M IN finishes up by decrementingn[H ] in line 11 and
returning a pointer to the deleted nodez in line 12.

Observe that if all trees in the Fibonacci heap are unorderedbinomial trees be-
fore FIB-HEAP-EXTRACT-M IN is executed, then they are all unordered binomial
trees afterward. There are two ways in which trees are changed. First, in lines 3–5
of FIB-HEAP-EXTRACT-M IN, each childx of root z becomes a root. By Exer-
cise 20.2-2, each new tree is itself an unordered binomial tree. Second, trees are
linked by FIB-HEAP-L INK only if they have the same degree. Since all trees are
unordered binomial trees before the link occurs, two trees whose roots each havek
children must have the structure ofUk. The resulting tree therefore has the structure
of Uk+1.

We are now ready to show that the amortized cost of extractingthe minimum
node of ann-node Fibonacci heap isO(D(n)). Let H denote the Fibonacci heap
just prior to the FIB-HEAP-EXTRACT-M IN operation.

The actual cost of extracting the minimum node can be accounted for as fol-
lows. An O(D(n)) contribution comes from there being at mostD(n) children of
the minimum node that are processed in FIB-HEAP-EXTRACT-M IN and from the
work in lines 1–2 and 14–19 of CONSOLIDATE. It remains to analyze the contri-
bution from thefor loop of lines 3–13. The size of the root list upon calling CON-
SOLIDATE is at mostD(n)+ t (H )− 1, since it consists of the originalt (H ) root-
list nodes, minus the extracted root node, plus the childrenof the extracted node,
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which number at mostD(n). Every time through thewhile loop of lines 6–12, one
of the roots is linked to another, and thus the total amount ofwork performed in
the for loop is at most proportional toD(n)+ t (H ). Thus, the total actual work in
extracting the minimum node isO(D(n)+ t (H )).

The potential before extracting the minimum node ist (H ) + 2m(H ), and the
potential afterward is at most(D(n)+ 1)+ 2m(H ), since at mostD(n)+ 1 roots
remain and no nodes become marked during the operation. The amortized cost is
thus at most

O(D(n)+ t (H ))+ ((D(n)+ 1)+ 2m(H ))− (t (H )+ 2m(H ))

= O(D(n))+ O(t (H ))− t (H )

= O(D(n)) ,

since we can scale up the units of potential to dominate the constant hidden in
O(t (H )). Intuitively, the cost of performing each link is paid for bythe reduction
in potential due to the link’s reducing the number of roots byone. We shall see
in Section 20.4 thatD(n) = O(lg n), so that the amortized cost of extracting the
minimum node isO(lg n).

Exercises

20.2-1
Show the Fibonacci heap that results from calling FIB-HEAP-EXTRACT-M IN on
the Fibonacci heap shown in Figure 20.3(m).

20.2-2
Prove that Lemma 19.1 holds for unordered binomial trees, but with property 4′ in
place of property 4.

20.2-3
Show that if only the mergeable-heap operations are supported, the maximum de-
greeD(n) in ann-node Fibonacci heap is at most⌊lg n⌋.

20.2-4
Professor McGee has devised a new data structure based on Fibonacci heaps.
A McGee heap has the same structure as a Fibonacci heap and supports the
mergeable-heap operations. The implementations of the operations are the same
as for Fibonacci heaps, except that insertion and union perform consolidation as
their last step. What are the worst-case running times of operations on McGee
heaps? How novel is the professor’s data structure?
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20.2-5
Argue that when the only operations on keys are comparing twokeys (as is the
case for all the implementations in this chapter), not all ofthe mergeable-heap
operations can run inO(1) amortized time.

20.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node in a Fibonacci heap
in O(1) amortized time and how to delete any node from ann-node Fibonacci heap
in O(D(n)) amortized time. These operations do not preserve the property that all
trees in the Fibonacci heap are unordered binomial trees. They are close enough,
however, that we can bound the maximum degreeD(n) by O(lg n). Proving this
bound, which we shall do in Section 20.4, will imply that FIB-HEAP-EXTRACT-
M IN and FIB-HEAP-DELETE run in O(lg n) amortized time.

Decreasing a key

In the following pseudocode for the operation FIB-HEAP-DECREASE-KEY, we
assume as before that removing a node from a linked list does not change any of
the structural fields in the removed node.

FIB-HEAP-DECREASE-KEY(H, x, k)

1 if k > key[x]
2 then error “new key is greater than current key”
3 key[x] ← k
4 y← p[x]
5 if y 6= NIL andkey[x] < key[y]
6 then CUT(H, x, y)

7 CASCADING-CUT(H, y)

8 if key[x] < key[min[H ]]
9 then min[H ]← x

CUT(H, x, y)

1 removex from the child list ofy, decrementingdegree[y]
2 addx to the root list ofH
3 p[x] ← NIL

4 mark[x] ← FALSE
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CASCADING-CUT(H, y)

1 z← p[y]
2 if z 6= NIL

3 then if mark[y] = FALSE

4 then mark[y] ← TRUE

5 else CUT(H, y, z)
6 CASCADING-CUT(H, z)

The FIB-HEAP-DECREASE-KEY procedure works as follows. Lines 1–3 ensure
that the new key is no greater than the current key ofx and then assign the new key
to x. If x is a root or ifkey[x] ≥ key[y], wherey is x’s parent, then no structural
changes need occur, since min-heap order has not been violated. Lines 4–5 test for
this condition.

If min-heap order has been violated, many changes may occur.We start by
cutting x in line 6. The CUT procedure “cuts” the link betweenx and its parenty,
makingx a root.

We use themark fields to obtain the desired time bounds. They record a little
piece of the history of each node. Suppose that the followingevents have happened
to nodex:

1. at some time,x was a root,

2. thenx was linked to another node,

3. then two children ofx were removed by cuts.

As soon as the second child has been lost, we cutx from its parent, making it a
new root. The fieldmark[x] is TRUE if steps 1 and 2 have occurred and one child
of x has been cut. The CUT procedure, therefore, clearsmark[x] in line 4, since it
performs step 1. (We can now see why line 3 of FIB-HEAP-L INK clearsmark[y]:
nodey is being linked to another node, and so step 2 is being performed. The next
time a child ofy is cut,mark[y] will be set toTRUE.)

We are not yet done, becausex might be the second child cut from its parenty
since the time thaty was linked to another node. Therefore, line 7 of FIB-HEAP-
DECREASE-KEY performs acascading-cutoperation ony. If y is a root, then
the test in line 2 of CASCADING-CUT causes the procedure to just return. Ify is
unmarked, the procedure marks it in line 4, since its first child has just been cut,
and returns. Ify is marked, however, it has just lost its second child;y is cut in
line 5, and CASCADING-CUT calls itself recursively in line 6 ony’s parentz. The
CASCADING-CUT procedure recurses its way up the tree until either a root or an
unmarked node is found.

Once all the cascading cuts have occurred, lines 8–9 of FIB-HEAP-DECREASE-
KEY finish up by updatingmin[H ] if necessary. The only node whose key changed
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Figure 20.4 Two calls of FIB-HEAP-DECREASE-KEY. (a) The initial Fibonacci heap.(b) The
node with key 46 has its key decreased to 15. The node becomes aroot, and its parent (with key 24),
which had previously been unmarked, becomes marked.(c)–(e)The node with key 35 has its key
decreased to 5. In part (c), the node, now with key 5, becomes aroot. Its parent, with key 26,
is marked, so a cascading cut occurs. The node with key 26 is cut from its parent and made an
unmarked root in (d). Another cascading cut occurs, since the node with key 24 is marked as well.
This node is cut from its parent and made an unmarked root in part (e). The cascading cuts stop at
this point, since the node with key 7 is a root. (Even if this node were not a root, the cascading cuts
would stop, since it is unmarked.) The result of the FIB-HEAP-DECREASE-KEY operation is shown
in part (e), withmin[H ] pointing to the new minimum node.

was the nodex whose key decreased. Thus, the new minimum node is either the
original minimum node or nodex.

Figure 20.4 shows the execution of two calls of FIB-HEAP-DECREASE-KEY,
starting with the Fibonacci heap shown in Figure 20.4(a). The first call, shown
in Figure 20.4(b), involves no cascading cuts. The second call, shown in Fig-
ures 20.4(c)–(e), invokes two cascading cuts.

We shall now show that the amortized cost of FIB-HEAP-DECREASE-KEY is
only O(1). We start by determining its actual cost. The FIB-HEAP-DECREASE-
KEY procedure takesO(1) time, plus the time to perform the cascading cuts. Sup-
pose that CASCADING-CUT is recursively calledc times from a given invocation
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of FIB-HEAP-DECREASE-KEY. Each call of CASCADING-CUT takesO(1) time
exclusive of recursive calls. Thus, the actual cost of FIB-HEAP-DECREASE-KEY,
including all recursive calls, isO(c).

We next compute the change in potential. LetH denote the Fibonacci heap
just prior to the FIB-HEAP-DECREASE-KEY operation. Each recursive call of
CASCADING-CUT, except for the last one, cuts a marked node and clears the mark
bit. Afterward, there aret (H )+c trees (the originalt (H ) trees,c−1 trees produced
by cascading cuts, and the tree rooted atx) and at mostm(H )−c+2 marked nodes
(c−1 were unmarked by cascading cuts and the last call of CASCADING-CUT may
have marked a node). The change in potential is therefore at most

((t (H )+ c)+ 2(m(H )− c+ 2))− (t (H )+ 2m(H )) = 4− c .

Thus, the amortized cost of FIB-HEAP-DECREASE-KEY is at most

O(c)+ 4− c = O(1) ,

since we can scale up the units of potential to dominate the constant hidden inO(c).
You can now see why the potential function was defined to include a term that is

twice the number of marked nodes. When a marked nodey is cut by a cascading
cut, its mark bit is cleared, so the potential is reduced by 2.One unit of potential
pays for the cut and the clearing of the mark bit, and the otherunit compensates
for the unit increase in potential due to nodey becoming a root.

Deleting a node

It is easy to delete a node from ann-node Fibonacci heap inO(D(n)) amortized
time, as is done by the following pseudocode. We assume that there is no key value
of −∞ currently in the Fibonacci heap.

FIB-HEAP-DELETE(H, x)

1 FIB-HEAP-DECREASE-KEY(H, x,−∞)

2 FIB-HEAP-EXTRACT-M IN (H )

FIB-HEAP-DELETE is analogous to BINOMIAL -HEAP-DELETE. It makesx be-
come the minimum node in the Fibonacci heap by giving it a uniquely small key
of −∞. Node x is then removed from the Fibonacci heap by the FIB-HEAP-
EXTRACT-M IN procedure. The amortized time of FIB-HEAP-DELETE is the sum
of the O(1) amortized time of FIB-HEAP-DECREASE-KEY and theO(D(n))

amortized time of FIB-HEAP-EXTRACT-M IN. Since we shall see in Section 20.4
that D(n) = O(lg n), the amortized time of FIB-HEAP-DELETE is O(lg n).
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Exercises

20.3-1
Suppose that a rootx in a Fibonacci heap is marked. Explain howx came to be
a marked root. Argue that it doesn’t matter to the analysis that x is marked, even
though it is not a root that was first linked to another node andthen lost one child.

20.3-2
Justify theO(1) amortized time of FIB-HEAP-DECREASE-KEY as an average cost
per operation by using aggregate analysis.

20.4 Bounding the maximum degree

To prove that the amortized time of FIB-HEAP-EXTRACT-M IN and FIB-HEAP-
DELETE is O(lg n), we must show that the upper boundD(n) on the degree of
any node of ann-node Fibonacci heap isO(lg n). By Exercise 20.2-3, when all
trees in the Fibonacci heap are unordered binomial trees,D(n) = ⌊lg n⌋. The cuts
that occur in FIB-HEAP-DECREASE-KEY, however, may cause trees within the
Fibonacci heap to violate the unordered binomial tree properties. In this section,
we shall show that because we cut a node from its parent as soonas it loses two
children, D(n) is O(lg n). In particular, we shall show thatD(n) ≤ ⌊logφ n⌋,
whereφ = (1+

√
5)/2.

The key to the analysis is as follows. For each nodex within a Fibonacci heap,
define size(x) to be the number of nodes, includingx itself, in the subtree rooted
at x. (Note thatx need not be in the root list—it can be any node at all.) We
shall show that size(x) is exponential indegree[x]. Bear in mind thatdegree[x] is
always maintained as an accurate count of the degree ofx.

Lemma 20.1
Let x be any node in a Fibonacci heap, and suppose thatdegree[x] = k. Let
y1, y2, . . . , yk denote the children ofx in the order in which they were linked tox,
from the earliest to the latest. Then,degree[y1] ≥ 0 anddegree[yi ] ≥ i − 2 for
i = 2, 3, . . . , k.

Proof Obviously,degree[y1] ≥ 0.
For i ≥ 2, we note that whenyi was linked tox, all of y1, y2, . . . , yi−1 were

children ofx, so we must have haddegree[x] = i − 1. Nodeyi is linked tox only
if degree[x] = degree[yi ], so we must have also haddegree[yi ] = i − 1 at that
time. Since then, nodeyi has lost at most one child, since it would have been cut
from x if it had lost two children. We conclude thatdegree[yi ] ≥ i − 2.
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We finally come to the part of the analysis that explains the name “Fibonacci
heaps.” Recall from Section 3.2 that fork = 0, 1, 2, . . ., thekth Fibonacci number
is defined by the recurrence

Fk =





0 if k = 0 ,

1 if k = 1 ,

Fk−1 + Fk−2 if k ≥ 2 .

The following lemma gives another way to expressFk.

Lemma 20.2
For all integersk ≥ 0,

Fk+2 = 1+
k∑

i=0

Fi .

Proof The proof is by induction onk. Whenk = 0,

1+
0∑

i=0

Fi = 1+ F0

= 1+ 0

= 1

= F2 .

We now assume the inductive hypothesis thatFk+1 = 1+
∑k−1

i=0 Fi , and we have

Fk+2 = Fk + Fk+1

= Fk +
(

1+
k−1∑

i=0

Fi

)

= 1+
k∑

i=0

Fi .

The following lemma and its corollary complete the analysis. They use the in-
equality (proved in Exercise 3.2-7)

Fk+2 ≥ φk ,

whereφ is the golden ratio, defined in equation (3.22) asφ = (1 +
√

5)/2 =
1.61803. . ..
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Lemma 20.3
Let x be any node in a Fibonacci heap, and letk = degree[x]. Then, size(x) ≥
Fk+2 ≥ φk, whereφ = (1+

√
5)/2.

Proof Let sk denote the minimum possible value of size(z) over all nodesz such
that degree[z] = k. Trivially, s0 = 1, s1 = 2, ands2 = 3. The numbersk is at
most size(x), and clearly, the value ofsk increases monotonically withk. As in
Lemma 20.1, lety1, y2, . . . , yk denote the children ofx in the order in which they
were linked tox. To compute a lower bound on size(x), we count one forx itself
and one for the first childy1 (for which size(y1) ≥ 1), giving

size(x) ≥ sk

= 2+
k∑

i=2

sdegree[yi ]

≥ 2+
k∑

i=2

si−2 ,

where the last line follows from Lemma 20.1 (so thatdegree[yi ] ≥ i − 2) and the
monotonicity ofsk (so thatsdegree[yi ] ≥ si−2).

We now show by induction onk that sk ≥ Fk+2 for all nonnegative integerk.
The bases, fork = 0 andk = 1, are trivial. For the inductive step, we assume that
k ≥ 2 and thatsi ≥ Fi+2 for i = 0, 1, . . . , k − 1. We have

sk ≥ 2+
k∑

i=2

si−2

≥ 2+
k∑

i=2

Fi

= 1+
k∑

i=0

Fi

= Fk+2 (by Lemma 20.2) .

Thus, we have shown that size(x) ≥ sk ≥ Fk+2 ≥ φk.

Corollary 20.4
The maximum degreeD(n) of any node in ann-node Fibonacci heap isO(lg n).

Proof Let x be any node in ann-node Fibonacci heap, and letk = degree[x].
By Lemma 20.3, we haven ≥ size(x) ≥ φk. Taking base-φ logarithms gives
us k ≤ logφ n. (In fact, becausek is an integer,k ≤ ⌊logφ n⌋.) The maximum
degreeD(n) of any node is thusO(lg n).
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Exercises

20.4-1
Professor Pinocchio claims that the height of ann-node Fibonacci heap isO(lg n).
Show that the professor is mistaken by exhibiting, for any positive integern, a
sequence of Fibonacci-heap operations that creates a Fibonacci heap consisting of
just one tree that is a linear chain ofn nodes.

20.4-2
Suppose we generalize the cascading-cut rule to cut a nodex from its parent as
soon as it loses itskth child, for some integer constantk. (The rule in Section 20.3
usesk = 2.) For what values ofk is D(n) = O(lg n)?

Problems

20-1 Alternative implementation of deletion
Professor Pisano has proposed the following variant of the FIB-HEAP-DELETE

procedure, claiming that it runs faster when the node being deleted is not the node
pointed to bymin[H ].

PISANO-DELETE(H, x)

1 if x = min[H ]
2 then FIB-HEAP-EXTRACT-M IN (H )

3 else y← p[x]
4 if y 6= NIL

5 then CUT(H, x, y)

6 CASCADING-CUT(H, y)

7 addx’s child list to the root list ofH
8 removex from the root list ofH

a. The professor’s claim that this procedure runs faster is based partly on the as-
sumption that line 7 can be performed inO(1) actual time. What is wrong with
this assumption?

b. Give a good upper bound on the actual time of PISANO-DELETE whenx is not
min[H ]. Your bound should be in terms ofdegree[x] and the numberc of calls
to the CASCADING-CUT procedure.

c. Suppose that we call PISANO-DELETE(H, x), and letH ′ be the Fibonacci heap
that results. Assuming that nodex is not a root, bound the potential ofH ′ in
terms ofdegree[x], c, t (H ), andm(H ).
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d. Conclude that the amortized time for PISANO-DELETE is asymptotically no
better than for FIB-HEAP-DELETE, even whenx 6= min[H ].

20-2 More Fibonacci-heap operations
We wish to augment a Fibonacci heapH to support two new operations without
changing the amortized running time of any other Fibonacci-heap operations.

a. The operation FIB-HEAP-CHANGE-KEY(H, x, k) changes the key of nodex
to the valuek. Give an efficient implementation of FIB-HEAP-CHANGE-KEY,
and analyze the amortized running time of your implementation for the cases
in which k is greater than, less than, or equal tokey[x].

b. Give an efficient implementation of FIB-HEAP-PRUNE(H, r ), which deletes
min(r, n[H ]) nodes fromH . Which nodes are deleted should be arbitrary. An-
alyze the amortized running time of your implementation. (Hint: You may need
to modify the data structure and potential function.)

Chapter notes

Fibonacci heaps were introduced by Fredman and Tarjan [98].Their paper also de-
scribes the application of Fibonacci heaps to the problems of single-source short-
est paths, all-pairs shortest paths, weighted bipartite matching, and the minimum-
spanning-tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan [81]developed “relaxed
heaps” as an alternative to Fibonacci heaps. There are two varieties of relaxed
heaps. One gives the same amortized time bounds as Fibonacciheaps. The
other allows DECREASE-KEY to run in O(1) worst-case (not amortized) time and
EXTRACT-M IN and DELETE to run in O(lg n) worst-case time. Relaxed heaps
also have some advantages over Fibonacci heaps in parallel algorithms.

See also the chapter notes for Chapter 6 for other data structures that support fast
DECREASE-KEY operations when the sequence of values returned by EXTRACT-
M IN calls are monotonically increasing over time and the data are integers in a
specific range.


