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Binomial Heaps

This chapter and Chapter 20 present data structures knowreaggeable heaps
which support the following five operations.

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, X) inserts nodex, whosekey field has already been filled in, into
heapH.

MINIMUM (H) returns a pointer to the node in hellpwhose key is minimum.

EXTRACT-MIN (H) deletes the node from hedb whose key is minimum, return-
ing a pointer to the node.

UNION(H3, Hy) creates and returns a new heap that contains all the nodeajs h
H; andH,. HeapsH; andH, are “destroyed” by this operation.

In addition, the data structures in these chapters alsoosupie following two
operations.

DecREASEKEY (H, X, k) assigns to nod& within heapH the new key valué,
which is assumed to be no greater than its current key value.

DELETE(H, x) deletes node& from heapH.

As the table in Figure 19.1 shows, if we don't need theidN operation, ordi-
nary binary heaps, as used in heapsort (Chapter 6), work gerations other
than WINION run in worst-case timé(Ig n) (or better) on a binary heap. If the
UNION operation must be supported, however, binary heaps peffooarly. By
concatenating the two arrays that hold the binary heaps modrged and then run-
ning MIN-HEAPIFY (see Exercise 6.2-2), theNJON operation take® (n) time in
the worst case.

1As mentioned in the introduction to Part V, our default melge heaps are mergeable min-
heaps, and so the operationaNWMuM, EXTRACT-MIN, and DECREASEKEY apply. Alterna-
tively, we could define anergeable max-heapvith the operations MxiMuM , EXTRACT-MAX,
and INCREASEKEY.
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Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
MAKE-HEAP CIEN) o) o)
INSERT O(gn) O(gn) ®1)
MINIMUM e0) O(gn) O
EXTRACT-MIN O(gn) B(gn) O(gn)
UNION ®() O(gn) O
DECREASEKEY O(gn) O(gn) ®1)
DELETE O(gn) O(gn) O(gn)

Figure 19.1 Running times for operations on three implementations ofgeable heaps. The
number of items in the heap(s) at the time of an operationrnstae byn.

In this chapter, we examine “binomial heaps,” whose woastedime bounds are
also shown in Figure 19.1. In particular, thelldN operation takes onlY(Ig n)
time to merge two binomial heaps with a totalroélements.

In Chapter 20, we shall explore Fibonacci heaps, which hagee better time
bounds for some operations. Note, however, that the rurtimmgs for Fibonacci
heaps in Figure 19.1 are amortized time bounds, not wosd-par-operation time
bounds.

This chapter ignores issues of allocating nodes prior tertis and freeing
nodes following deletion. We assume that the code that t&lfieap procedures
deals with these details.

Binary heaps, binomial heaps, and Fibonacci heaps areddficient in their
support of the operationEARCH; it can take a while to find a node with a given
key. For this reason, operations such asCREASEKEY and DELETE that refer
to a given node require a pointer to that node as part of themti As in our
discussion of priority queues in Section 6.5, when we use ay@able heap in
an application, we often store a handle to the correspondpmlication object
in each mergeable-heap element, as well as a handle to pondiag mergeable-
heap element in each application object. The exact natureesé handles depends
on the application and its implementation.

Section 19.1 defines binomial heaps after first defining ttwistituent binomial
trees. It also introduces a particular representationradrnial heaps. Section 19.2
shows how we can implement operations on binomial heapseiritie bounds
given in Figure 19.1.
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19.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so thistieecstarts by defining
binomial trees and proving some key properties. We then eldfimomial heaps
and show how they can be represented.

19.1.1 Binomial trees

The binomial tree By is an ordered tree (see Section B.5.2) defined recursively.
As shown in Figure 19.2(a), the binomial tr&g consists of a single node. The
binomial treeBy consists of two binomial treeBy_; that arelinked together: the
root of one is the leftmost child of the root of the other. Fad9.2(b) shows the
binomial treesBy throughB,.

Some properties of binomial trees are given by the folloiamgma.

Lemma 19.1 (Properties of binomial trees)
For the binomial tredBy,

1. there are2nodes,

2. the height of the tree is,

3. there are exactl{}i() nodes at depthfori =0,1,...,k, and
4

. the root has degrde which is greater than that of any other node; moreover if
the children of the root are numbered from left to rightioy 1,k — 2, ..., 0,
childi is the root of a subtre8;.

Proof The proofis by induction ok. For each property, the basis is the binomial
tree By. Verifying that each property holds fd@j is trivial.
For the inductive step, we assume that the lemma holdBfoy.

1. Binomial treeBy consists of two copies d_1, and soBy has 21 2k-1 = 2k
nodes.

2. Because of the way in which the two copiesBpf ; are linked to formBy, the
maximum depth of a node By is one greater than the maximum deptiBjn ;.
By the inductive hypothesis, this maximum deptltiks- 1) + 1 = k.

3. LetD(k, 1) be the number of nodes at deptlof binomial treeBy. Since By
is composed of two copies @_; linked together, a node at depthn By_;
appears inBx once at depth and once at depth+ 1. In other words, the
number of nodes at depthn By is the number of nodes at deptin By_; plus
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Figure 19.2 (a)The recursive definition of the binomial tr&,. Triangles represent rooted sub-
trees. (b) The binomial treesBy through B4. Node depths iB4 are shown.(c) Another way of
looking at the binomial tre®y.

the number of nodes at degth- 1 in Bx_;. Thus,

Dk.i) = Dk-11i)+D(k-1i-1 (bytheinductive hypothesis)
- (k |_ 1) + (l,( : D (by Exercise C.1-7)

()

4. The only node with greater degree Bx than in Bx_; is the root, which
has one more child than iBx_;. Since the root oB¢_; has degre& — 1,
the root of By has degred&. Now, by the inductive hypothesis, and as Fig-
ure 19.2(c) shows, from left to right, the children of thetrobBy_; are roots
of Bx_o, Bk_3, ..., Bg. WhenBy_; is linked toBy_1, therefore, the children of
the resulting root are roots @&_1, Bk_2, ..., Bo. ]
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Corollary 19.2
The maximum degree of any node inumode binomial tree is Ig.

Proof Immediate from properties 1 and 4 of Lemma 19.1. [

The term “binomial tree” comes from property 3 of Lemma 1%ihce the
terms('i‘) are the binomial coefficients. Exercise 19.1-3 gives furfhstification
for the term.

19.1.2 Binomial heaps

A binomial heapH is a set of binomial trees that satisfies the followbigomial-
heap properties

1. Each binomial tree iH obeys themin-heap property the key of a node is
greater than or equal to the key of its parent. We say that sach tree is
min-heap-ordered

2. For any nonnegative integky there is at most one binomial tree lih whose
root has degrek.

The first property tells us that the root of a min-heap-orddree contains the
smallest key in the tree.

The second property implies that amode binomial heapl consists of at most
llgn] + 1 binomial trees. To see why, observe that the binary reptasen ofn
has|[lgn] + 1 bits, say(bygnj, bugnj-1, - - -, bo), so thatn = Zi“:gO”J b2'. By
property 1 of Lemma 19.1, therefore, binomial ti&eappears irH if and only if
bit bj = 1. Thus, binomial heapl contains at mostlg n] + 1 binomial trees.

Figure 19.3(a) shows a binomial hebpwith 13 nodes. The binary represen-
tation of 13 is(1101), andH consists of min-heap-ordered binomial trés B,
and By, having 8, 4, and 1 nodes respectively, for a total of 13 nodes

Representing binomial heaps

As shown in Figure 19.3(b), each binomial tree within a biferheap is stored
in the left-child, right-sibling representation of Secti0.4. Each node haskay
field and any other satellite information required by theligption. In addition,
each node contains pointerg[x] to its parentchild[x] to its leftmost child, and
sibling[x] to the sibling ofx immediately to its right. If node is a root, then
p[x] = NiL. If node x has no children, theghild[x] = NIL, and if x is the
rightmost child of its parent, thesibling[x] = NIL. Each node& also contains the
field degreéx], which is the number of children of.

As Figure 19.3 also shows, the roots of the binomial treekiwia binomial
heap are organized in a linked list, which we refer to agtiz¢ list. The degrees
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Figure 19.3 A binomial heapH with n = 13 nodes(a) The heap consists of binomial treBg, By,
and B3, which have 1, 4, and 8 nodes respectively, totating 13 nodes. Since each binomial tree
is min-heap-ordered, the key of any node is no less than theflies parent. Also shown is the root
list, which is a linked list of roots in order of increasinggiee. (b) A more detailed representation
of binomial heapH. Each binomial tree is stored in the left-child, right-&ibl representation, and
each node stores its degree.

of the roots strictly increase as we traverse the root ligttHg second binomial-
heap property, in an-node binomial heap the degrees of the roots are a subset
of {0,1,...,|lgn]}. Thesibling field has a different meaning for roots than for
nonroots. Ifx is a root, thersibling[x] points to the next root in the root list. (As
usual,sibling[x] = NIL if X is the last root in the root list.)

A given binomial heafH is accessed by the fieliead H], which is simply a
pointer to the first root in the root list dfl. If binomial heapH has no elements,
thenhead H] = NIL.
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Figure 19.4 The binomial treeB,4 with nodes labeled in binary by a postorder walk.

Exercises

19.1-1

Suppose thak is a node in a binomial tree within a binomial heap, and assume
thatsibling[x] # NiL. If x is not a root, how doedegregsibling[x]] compare to
degre¢x]? How about ifx is a root?

19.1-2
If xis a nonroot node in a binomial tree within a binomial heapy Hoesdegre¢x]
compare tadegre¢p[x]]?

19.1-3

Suppose we label the nodes of binomial tBein binary by a postorder walk, as
in Figure 19.4. Consider a nodelabeledl at depthi, and letj = k —i. Show
thatx hasj 1's in its binary representation. How many bindngtrings are there
that contain exactly 1's? Show that the degree »fis equal to the number of 1's
to the right of the rightmost 0 in the binary representatidh. o

19.2 Operations on binomial heaps

In this section, we show how to perform operations on binbimeaps in the time
bounds shown in Figure 19.1. We shall only show the upper tguthe lower
bounds are left as Exercise 19.2-10.

Creating a new binomial heap

To make an empty binomial heap, theakE-BINOMIAL -HEAP procedure sim-
ply allocates and returns an objeadt whereheadH] = NIL. The running time
is®().
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Finding the minimum key

The procedure BioMIAL -HEAP-MINIMUM returns a pointer to the node with the
minimum key in ann-node binomial heapl. This implementation assumes that
there are no keys with valus. (See Exercise 19.2-5.)

BINOMIAL -HEAP-MINIMUM (H)

1 y<«<NIL

2 X <« headH]

3 min<« oo

4 while x # NIL

5 do if keyfx] < min

6 then min < key[x]
7 y < X

8 X < sibling[X]

9 return y

Since a binomial heap is min-heap-ordered, the minimum kagtmeside in a
root node. The BNOMIAL -HEAP-MINIMUM procedure checks all roots, which
number at mostlgn] + 1, saving the current minimum imin and a pointer to
the current minimum iny. When called on the binomial heap of Figure 19.3,
BINOMIAL -HEAP-MINIMUM returns a pointer to the node with key 1.

Because there are at modHggn| + 1 roots to check, the running time of
BINOMIAL -HEAP-MINIMUM is O(lg n).

Uniting two binomial heaps

The operation of uniting two binomial heaps is used as a stime by most of the
remaining operations. ThelBoMIAL -HEAP-UNION procedure repeatedly links
binomial trees whose roots have the same degree. The faljoprocedure links
the Bx_1 tree rooted at nodg to the Bx_; tree rooted at nodg; that is, it makeg
the parent ofy. Nodez thus becomes the root ofB tree.

BINOMIAL -LINK (Y, Z)

1 plyl <z

2 siblingy] « child[Z]

3 child[Z] <« vy

4 degre¢z] < degredgz] + 1

The BINOMIAL -LINK procedure makes nodgthe new head of the linked list
of nodez's children in O(1) time. It works because the left-child, right-sibling
representation of each binomial tree matches the ordermgepty of the tree: in
a By tree, the leftmost child of the root is the root oBga_; tree.
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The following procedure unites binomial heapls and H,, returning the re-
sulting heap. It destroys the representationdHefand H, in the process. Be-
sides BNOMIAL -LINK, the procedure uses an auxiliary procedunsi@vIAL -
HEAP-MERGE that merges the root lists &f; andH, into a single linked list that
is sorted by degree into monotonically increasing ordere BiNOMIAL -HEAP-
MERGE procedure, whose pseudocode we leave as Exercise 19.2ifiliar to
the MERGE procedure in Section 2.3.1.

BINOMIAL -HEAP-UNION (Hy, H»)

1 H <« MAKE-BINOMIAL -HEAP()

2 headH] < BINOMIAL -HEAP-MERGE(H1, Hy)

3 free the object$1; and H; but not the lists they point to

4 if headH] = NIL

5 then return H

6 prewx < NIL

7 X <« headH]

8 nextx < sibling[X]

9 while nextx # NIL
10 do if (degre¢x] = degreg¢nextx]) or

(sibling[nextx] # NIL anddegregsibling[nextx]] = degre¢x])

11 then prewx < x o> Cases 1 and 2
12 X < nextx o> Cases 1 and 2
13 else ifkeyfx] < keynextx]
14 then sibling[x] <« sibling[nextx] > Case 3
15 BINOMIAL -LINK (nextx, X) > Case 3
16 else ifprevx = NIL > Case 4
17 then head H] < nextx > Case 4
18 else sibling[prewx] < nextx > Case 4
19 BINOMIAL -LINK (X, nextx) > Case 4
20 X < nextx > Case 4
21 nextx < sibling[x]
22 return H

Figure 19.5 shows an example oiN®MIAL -HEAP-UNION in which all four cases
given in the pseudocode occur.

The BINOMIAL -HEAP-UNION procedure has two phases. The first phase, per-
formed by the call of BNOMIAL -HEAP-MERGE, merges the root lists of binomial
heapsH; andH, into a single linked lisH that is sorted by degree into monotoni-
cally increasing order. There might be as many as two roeisn@ more) of each
degree, however, so the second phase links roots of equaeeqgtil at most one
root remains of each degree. Because the linkedligt sorted by degree, we can
perform all the link operations quickly.
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BINOMIAL -HEAP-MERGE

next-x

Case 3

X next-x

Figure 19.5 The execution of BNOMIAL -HEAP-UNION. (a) Binomial heapsH;, and Hy. (b) Bi-
nomial heapH is the output of BNOMIAL -HEAP-MERGHH1, H»). Initially, x is the first root on
the root list ofH. Because botlk andnextx have degree 0 arldey[x] < keynextx], case 3 applies.
(c) After the link occursx is the first of three roots with the same degree, so case Zapful) After
all the pointers move down one position in the root list, casspplies, since is the first of two
roots of equal degrede) After the link occurs, case 3 applig$) After another link, case 1 applies,
because has degree 3 amikextx has degree 4. This iteration of tidnile loop is the last, because
after the pointers move down one position in the root histx = NIL.

In detail, the procedure works as follows. Lines 1-3 startrigrging the root
lists of binomial heapdd; and H, into a single root listH. The root lists ofH;
andH, are sorted by strictly increasing degree, and@®vIAL -HEAP-M ERGE re-
turns a root listH that is sorted by monotonically increasing degree. If thod lists
of H; and H, havem roots altogether, BIOMIAL -HEAP-MERGE runs in O(m)
time by repeatedly examining the roots at the heads of therdwblists and ap-
pending the root with the lower degree to the output root tethoving it from its
input root list in the process.
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prev-x X next-x
(d) headH] %% >(7)—>(3
B & @
Case 4
prev-x X next-x
(e) headH] %% >(3 >(15
:
3 @
Case 3
prev-x X
(f) headH] %%
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The BINOMIAL -HEAP-UNION procedure next initializes some pointers into the
root list of H. First, it simply returns in lines 4-5 if it happens to be umgttwo
empty binomial heaps. From line 6 on, therefore, we know khéditas at least one
root. Throughout the procedure, we maintain three poiritgosthe root list:

+ X points to the root currently being examined,

« prewvx points to the root precedingon the root list:sibling[prevx] = x (since
initially x has no predecessor, we start witle-x set toNiL), and

+ nextx points to the root following on the root list:sibling[x] = nextx.

Initially, there are at most two roots on the root listof a given degree: because
H; andH, were binomial heaps, they each had at most one root of a gegee.
Moreover, BNOMIAL -HEAP-MERGE guarantees us that if two roots i have
the same degree, they are adjacent in the root list.

In fact, during the execution of IROMIAL -HEAP-UNION, there may be three
roots of a given degree appearing on the root Hisat some time. We shall see
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in a moment how this situation could occur. At each iteratbthe while loop of
lines 9-21, therefore, we decide whether to knkndnextx based on their degrees
and possibly the degree sibling[nextx]. An invariant of the loop is that each time
we start the body of the loop, boihandnextx are nonNIL. (See Exercise 19.2-4
for a precise loop invariant.)

Case 1, shown in Figure 19.6(a), occurs whegre¢x] # degre¢nextx], that
is, whenx is the root of aBy-tree anchextx is the root of aB,-tree for somé > k.
Lines 11-12 handle this case. We don't limlandnextx, so we simply march the
pointers one position farther down the list. Updatmextx to point to the node
following the new nodex is handled in line 21, which is common to every case.

Case 2, shown in Figure 19.6(b), occurs whkes the first of three roots of equal
degree, that is, when

degre¢x] = degre¢nextx] = degregsibling[nextx]] .

We handle this case in the same manner as case 1. we just rhargpbibters one
position farther down the list. The next iteration will exiée either case 3 or case 4
to combine the second and third of the three equal-degres. rbime 10 tests for
both cases 1 and 2, and lines 11-12 handle both cases.

Cases 3 and 4 occur wheris the first of two roots of equal degree, that is, when

degreg¢x] = degreg¢nextx] # degregsibling[nextx]] .

These cases may occur in any iteration, but one of them ale@yg's immediately
following case 2. In cases 3 and 4, we likkand nextx. The two cases are
distinguished by whethex or nextx has the smaller key, which determines the
node that will be the root after the two are linked.

In case 3, shown in Figure 19.6(&gyX] < keynextx], sonextx is linked tox.
Line 14 removesiextx from the root list, and line 15 make®extx the leftmost
child of x.

In case 4, shown in Figure 19.6(dextx has the smaller key, sois linked to
nextx. Lines 16-18 remove from the root list; there are two cases depending
on whetherx is the first root on the list (line 17) or is not (line 18). Lin® then
makesx the leftmost child ohextx, and line 20 updates for the next iteration.

Following either case 3 or case 4, the setup for the nexttiberaf the while
loop is the same. We have just linked tvBp-trees to form aBy, ;-tree, whichx
now points to. There were already zero, one, or two oBgr-trees on the root
list resulting from BNOMIAL -HEAP-MERGE, sox is now the first of either one,
two, or threeBy ;-trees on the root list. Ik is the only one, then we enter case 1
in the next iterationdegred¢x] £ degreg¢nextx]. If x is the first of two, then we
enter either case 3 or case 4 in the next iteration. It is whinthe first of three
that we enter case 2 in the next iteration.

The running time of BNOMIAL -HEAP-UNION is O(lg n), wheren is the total
number of nodes in binomial heapk andH,. We can see this as follows. Lel
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prev-x X next-x sibling[next-% prev-x X next-x
@ () © @ @ () © @
Case 1
.............. HIS
Bx B Bx B
prev-x X next-x sibling[next-3 prev-x X next-x
@ () d @ () © @
Case 2
.............. HIS
Bx Bx Bx Bx Bx Bx
prev-x X next-x sibling[next-%
@ © © ) .
Case 3
.............. HIS
Bx Bx B
key[X] < keynext-}
prev-x X next-x sibling[next-%
@ 1) © )
Case 4

Bx Bx B
keyx] > keynext-%

Figure 19.6 The four cases that occur inmBoMIAL -HEAP-UNION. Labelsa, b, ¢, andd serve
only to identify the roots involved; they do not indicate tegrees or keys of these roots. In
each casex is the root of aBy-tree andl > k. (a) Case 1:degreg¢x] # degreg¢nextx]. The
pointers move one position farther down the root ligi) Case 2:degre¢x] = degreg¢nextx] =
degregsibling[nextx]]. Again, the pointers move one position farther down thst, liand the
next iteration executes either case 3 or case (d) Case 3: degreg¢x] = degreg¢nextx] #
degregsibling[nextx]] and key[x] < keynextx]. We removenextx from the root list and link it
to x, creating aBy1-tree. (d) Case 4:degre¢x] = degregnextx] # degregsiblinglnextx]] and
keyinextx] < key[x]. We removex from the root list and link it tmextx, again creating 8y 1-tree.

containn; nodes andH, containn, nodes, so that = n;+n,. ThenH; contains at
most|Ig ny | +1 roots andH, contains at mostig n, | +1 roots, and sél contains at
most|lgny |+ [lgny|+2 < 2|lgn]+2 = O(lg n) roots immediately after the call

of BINOMIAL -HEAP-MERGE The time to perform BNOMIAL -HEAP-MERGE IS

thus O(lgn). Each iteration of thevhile loop takesO(1) time, and there are at
most [Ign.] + [lgn,] + 2 iterations because each iteration either advances the



468 Chapter 19 Binomial Heaps

pointers one position down the root list Bf or removes a root from the root list.
The total time is thu€ (g n).

Inserting a node

The following procedure inserts noddnto binomial heafH, assuming that has
already been allocated akdyx] has already been filled in.

BINOMIAL -HEAP-INSERT(H, X)

H’ < MAKE-BINOMIAL -HEAP()

p[x] < NIL

child[x] < NIL

sibling[x] < NIL

degreg¢x] <— 0

headH’] < x

H <« BINOMIAL -HEAP-UNION(H, H")

~NOoO O WNPE

The procedure simply makes a one-node binomial h¢ap O(1) time and unites
it with then-node binomial heapl in O(lg n) time. The call to BNOMIAL -HEAP-
UNION takes care of freeing the temporary binomial héHp (A direct implemen-
tation that does not call IRoMIAL -HEAP-UNION is given as Exercise 19.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimuey kom binomial
heapH and returns a pointer to the extracted node.

BINOMIAL -HEAP-EXTRACT-MIN (H)

1 find the rootx with the minimum key in the root list o,
and remove from the root list ofH
2 H’ < MAKE-BINOMIAL -HEAP()
3 reverse the order of the linked list 6 children,
and sehead H’] to point to the head of the resulting list
4 H <« BINOMIAL -HEAP-UNION(H, H)
5 return X

This procedure works as shown in Figure 19.7. The input biabheapH is
shown in Figure 19.7(a). Figure 19.7(b) shows the situaditer line 1: the rook
with the minimum key has been removed from the root listHof If x is the root
of a By-tree, then by property 4 of Lemma 19x’s children, from left to right,
are roots ofBy_1-, Bx_»-, ..., Bg-trees. Figure 19.7(c) shows that by reversing the
list of x’s children in line 3, we have a binomial he&fj that contains every node
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Figure 19.7 The action of BNOMIAL -HEAP-EXTRACT-MIN. (a) A binomial heapH. (b) The
root x with minimum key is removed from the root list &f. (c) The linked list ofx’s children is
reversed, giving another binomial hebg. (d) The result of unitingH andH’.

in X’s tree except fox itself. Becaus«'’s tree was removed frorfl in line 1, the
binomial heap that results from unitindggandH’ in line 4, shown in Figure 19.7(d),
contains all the nodes originally iH except forx. Finally, line 5 return.

Since each of lines 1-4 tak€XIg n) time if H hasn nodes, BNOMIAL -HEAP-
EXTRACT-MIN runs inO(lg n) time.
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Decreasing a key

The following procedure decreases the key of a nodea binomial heafH to a
new valuek. It signals an error ik is greater thax’s current key.

BINOMIAL -HEAP-DECREASEKEY (H, X, k)
if k > keyx]
then error “new key is greater than current key”
keyx] < k
y < X
z < p[y]
while z # NIL andkeyy] < key[Z]
do exchangekeyy] < key[Z]
> If y andz have satellite fields, exchange them, too.
y<«1Z
z < ply]

COVWoO~NOUILE WNPE

=

As shown in Figure 19.8, this procedure decreases a key igahme manner
as in a binary min-heap: by “bubbling up” the key in the heagdte”Aensuring
that the new key is in fact no greater than the current key had &ssigning the
new key tox, the procedure goes up the tree, witlnitially pointing to nodex.

In each iteration of thevhile loop of lines 6—10keyfy] is checked against the
key of y’s parentz. If y is the root orkeyfy] > ke){Zz], the binomial tree is now
min-heap-ordered. Otherwise, nogeiolates min-heap ordering, and so its key is
exchanged with the key of its parentalong with any other satellite information.
The procedure then seysto z, going up one level in the tree, and continues with
the next iteration.

The BINOMIAL -HEAP-DECREASEKEY procedure take®(lgn) time. By
property 2 of Lemma 19.1, the maximum depthxa$ |Ig n], so thewhile loop of
lines 6-10 iterates at mogdg n] times.

Deleting a key

It is easy to delete a nodes key and satellite information from binomial heép
in O(lg n) time. The following implementation assumes that no nodeectly in
the binomial heap has a key eto.

BINOMIAL -HEAP-DELETE(H, X)

1 BINOMIAL -HEAP-DECREASEKEY (H, X, —00)
2 BINOMIAL -HEAP-EXTRACT-MIN (H)

The BINOMIAL -HEAP-DELETE procedure makes node have the unique mini-
mum key in the entire binomial heap by giving it a key-efo. (Exercise 19.2-6
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(@) headH]—>@§ >

(b) headH]

©) heaqH]H.—ﬁ >%6 z
y

Figure 19.8 The action of BNOMIAL -HEAP-DECREASEKEY. (a) The situation just before line 6

of the first iteration of thevhile loop. Nodey has had its key decreased to 7, which is less than the
key of y's parentz. (b) The keys of the two nodes are exchanged, and the situatibbgtere line 6

of the second iteration is shown. Pointgrandz have moved up one level in the tree, but min-heap
order is still violated(c) After another exchange and moving pointg@ndz up one more level, we
find that min-heap order is satisfied, so thigile loop terminates.

deals with the situation in whickh oo cannot appear as a key, even temporarily.) It
then bubbles this key and the associated satellite infoomap to a root by calling
BINOMIAL -HEAP-DECREASEKEY. This root is then removed frod by a call
of BINOMIAL -HEAP-EXTRACT-MIN.

The BINOMIAL -HEAP-DELETE procedure take®(lg n) time.

Exercises

19.2-1
Write pseudocode for BIOMIAL -HEAP-MERGE
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19.2-2
Show the binomial heap that results when a node with key 2dsiried into the
binomial heap shown in Figure 19.7(d).

19.2-3
Show the binomial heap that results when the node with keg #8leted from the
binomial heap shown in Figure 19.8(c).

19.2-4
Argue the correctness ofiIBOMIAL -HEAP-UNION using the following loop in-
variant:

At the start of each iteration of th&hile loop of lines 9-21x points to a
root that is one of the following:

« the only root of its degree,
« the first of the only two roots of its degree, or
+ the first or second of the only three roots of its degree.

Moreover, all roots preceding's predecessor on the root list have unique
degrees on the root list, andxfs predecessor has a degree different from
that of x, its degree on the root list is unique, too. Finally, noderdeg
monotonically increase as we traverse the root list.

19.2-5

Explain why the BNOMIAL -HEAP-MINIMUM procedure might not work correctly
if keys can have the valuso. Rewrite the pseudocode to make it work correctly in
such cases.

19.2-6

Suppose there is no way to represent the-key. Rewrite the BNOMIAL -HEAP-
DELETE procedure to work correctly in this situation. It shouldlstike O(lg n)
time.

19.2-7

Discuss the relationship between inserting into a binohealp and incrementing a
binary number and the relationship between uniting twotniiabheaps and adding
two binary numbers.

19.2-8
In light of Exercise 19.2-7, rewrite IROMIAL -HEAP-INSERT to insert a node di-
rectly into a binomial heap without callingiBoMIAL -HEAP-UNION.
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19.2-9

Show that if root lists are kept in strictly decreasing ordgrdegree (instead of
strictly increasing order), each of the binomial heap ojp@na can be implemented
without changing its asymptotic running time.

19.2-10

Find inputs that cause IBOMIAL -HEAP-EXTRACT-MIN, BINOMIAL -HEAP-
DeECREASEKEY, and BNOMIAL -HEAP-DELETE to run in Q(lgn) time. Ex-
plain why the worst-case running times ofN®MIAL -HEAP-INSERT, BINOMIAL -
HEAP-MINIMUM, and BNOMIAL -HEAP-UNION are ﬁ(lg n) but not Q(lgn).
(See Problem 3-5.)

Problems

19-1 2-3-4 heaps

Chapter 18 introduced the 2-3-4 tree, in which every intenode (other than pos-
sibly the root) has two, three, or four children and all leslvave the same depth. In
this problem, we shall implemegt3-4 heapswhich support the mergeable-heap
operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways 2-3-4 heaps,
only leaves store keys, and each lgadtores exactly one key in the fieksyf x].
There is no particular ordering of the keys in the leaveg; ihdrom left to right,
the keys may be in any order. Each internal nadmntains a valusmal[x] that
is equal to the smallest key stored in any leaf in the subtreted atx. The rootr
contains a fielcheigh{r] that is the height of the tree. Finally, 2-3-4 heaps are
intended to be kept in main memory, so that disk reads anésaite not needed.

Implement the following 2-3-4 heap operations. Each of tperations in
parts (a)—(e) should run i@(lgn) time on a 2-3-4 heap with elements. The
UNION operation in part (f) should run i@ (Ig n) time, wheren is the number of
elements in the two input heaps.

a. MINIMUM , which returns a pointer to the leaf with the smallest key.

b. DECREASEKEY, which decreases the key of a given lgafo a given value
k < keyx].

c. INSERT, which inserts leak with key k.
d. DELETE, which deletes a given leat

e. EXTRACT-MIN, which extracts the leaf with the smallest key.
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f. UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 reap de-
stroying the input heaps.

19-2 Minimum-spanning-tree algorithm using binomial heap
Chapter 23 presents two algorithms to solve the problem dfrfgna minimum
spanning tree of an undirected graph. Here, we shall see lmmmial heaps can
be used to devise a different minimum-spanning-tree alyori

We are given a connected, undirected gr&pk: (V, E) with a weight function
w . E — R. We callw(u, v) the weight of edgéu, v). We wish to find a minimum
spanning tree fofs: an acyclic subset C E that connects all the vertices W
and whose total weight

w(T) = Z w(u, v)

(u,v)eT
is minimized.
The following pseudocode, which can be proven correct usingniques from

Section 23.1, constructs a minimum spanning Tedt maintains a partitioV;}
of the vertices oV and, with each se¥;, a set

Ei C{(u,v):ueVorveV}

of edges incident on vertices .

MST(G)
1 T<«0
2 for each vertex; € V[G]
3 doV, < {v}
4 Ei < {(v,v) € E[G]}
5 while there is more than one sét
6 do choose any se;
7 extract the minimum-weight edda, v) from E;
8 assume without loss of generality that V; andv € V;
9 ifi # ]
10 thenT < T U{(u, v)}
11 Vi <V, U V;j, destroyingV;
12 Ei < E U Ej

Describe how to implement this algorithm using binomial peeéo manage the
vertex and edge sets. Do you need to change the representéta binomial
heap? Do you need to add operations beyond the mergealgespeeations given
in Figure 19.1? Give the running time of your implementation
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Chapter notes

Binomial heaps were introduced in 1978 by Vuillemin [307to®n [49, 50] stud-
ied their properties in detalil.
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Fibonacci Heaps

In Chapter 19, we saw how binomial heaps suppo@iig n) worst-case time the
mergeable-heap operationssERT, MINIMUM , EXTRACT-MIN, and INION, plus
the operations BCREASEKEY and DELETE. In this chapter, we shall examine
Fibonacci heaps, which support the same operations butthavadvantage that
operations that do not involve deleting an element ru@®{@) amortized time.

From a theoretical standpoint, Fibonacci heaps are edlyatésirable when the
number of XTRACT-MIN and DELETE operations is small relative to the number
of other operations performed. This situation arises inynvapplications. For ex-
ample, some algorithms for graph problems may calcREASEKEY once per
edge. For dense graphs, which have many edge®) theamortized time of each
call of DECREASEKEY adds up to a big improvement over tBglg n) worst-case
time of binary or binomial heaps. Fast algorithms for praidesuch as comput-
ing minimum spanning trees (Chapter 23) and finding singleee shortest paths
(Chapter 24) make essential use of Fibonacci heaps.

From a practical point of view, however, the constant fectmmd programming
complexity of Fibonacci heaps make them less desirable dhdinary binary (or
k-ary) heaps for most applications. Thus, Fibonacci heapgedominantly of
theoretical interest. If a much simpler data structure withsame amortized time
bounds as Fibonacci heaps were developed, it would be diigabase as well.

Like a binomial heap, a Fibonacci heap is a collection ofsréébonacci heaps,
in fact, are loosely based on binomial heaps. If neith&@xREASEKEY nor
DELETE is ever invoked on a Fibonacci heap, each tree in the heakeislbi-
nomial tree. Fibonacci heaps have a more relaxed strudtareldinomial heaps,
however, allowing for improved asymptotic time bounds. ¥Wirat maintains the
structure can be delayed until it is convenient to perform.

Like the dynamic tables of Section 17.4, Fibonacci heaper @ffgood example
of a data structure designed with amortized analysis in mifde intuition and
analyses of Fibonacci heap operations in the remaindeisoftiapter rely heavily
on the potential method of Section 17.3.
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The exposition in this chapter assumes that you have reapt€htd on bino-
mial heaps. The specifications for the operations appeblatrchapter, as does the
table in Figure 19.1, which summarizes the time bounds ferafpons on binary
heaps, binomial heaps, and Fibonacci heaps. Our presentdtthe structure of
Fibonacci heaps relies on that of binomial-heap structainel, some of the oper-
ations performed on Fibonacci heaps are similar to thosenpeed on binomial
heaps.

Like binomial heaps, Fibonacci heaps are not designed wefficient support
to the operation SARCH; operations that refer to a given node therefore require
a pointer to that node as part of their input. When we use araibd heap in
an application, we often store a handle to the corresponaldication object in
each Fibonacci-heap element, as well as a handle to congisgoFibonacci-heap
element in each application object.

Section 20.1 defines Fibonacci heaps, discusses theirsespiegion, and
presents the potential function used for their amortizedlyasis. Section 20.2
shows how to implement the mergeable-heap operations &nevadhe amortized
time bounds shown in Figure 19.1. The remaining two openatiddECREASE
KEY and DELETE, are presented in Section 20.3. Finally, Section 20.4 fassHf
a key part of the analysis and also explains the curious ndithe alata structure.

20.1 Structure of Fibonacci heaps

Like a binomial heap, &ibonacci heapis a collection of min-heap-ordered trees.
The trees in a Fibonacci heap are not constrained to be bathdraes, however.
Figure 20.1(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, gre#hin Fibonacci
heaps are rooted but unordered. As Figure 20.1(b) showh, remiex contains
a pointerp[x] to its parent and a pointathild[x] to any one of its children. The
children ofx are linked together in a circular, doubly linked list, whiale call
the child list of x. Each childy in a child list has pointer¢eft[y] and right[y]
that point toy’s left and right siblings, respectively. If nodeis an only child,
thenleft[y] = right[y] = y. The order in which siblings appear in a child list is
arbitrary.

Circular, doubly linked lists (see Section 10.2) have twaaadages for use in
Fibonacci heaps. First, we can remove a node from a ciraddaubly linked list
in O(1) time. Second, given two such lists, we can concatenate thefslice”
them together) into one circular, doubly linked list@{1) time. In the descriptions
of Fibonacci heap operations, we shall refer to these dpasinformally, letting
the reader fill in the details of their implementations.
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Figure 20.1 (a)A Fibonacci heap consisting of five min-heap-ordered trews 18 nodes. The
dashed line indicates the root list. The minimum node of tephis the node containing the key 3.
The three marked nodes are blackened. The potential ofahisplar Fibonacci heap ist®2-3 = 11.
(b) A more complete representation showing pointer@p arrows)child (down arrows), andeft
andright (sideways arrows). These details are omitted in the remgiiigures in this chapter, since
all the information shown here can be determined from whaéays in part (a).

Two other fields in each node will be of use. The number of ciiidn the child
list of nodex is stored indegreg¢x]. The boolean-valued fieltharix] indicates
whether nodex has lost a child since the last timavas made the child of another
node. Newly created nodes are unmarked, and a rdmEomes unmarked when-
ever it is made the child of another node. Until we look at tecREASEKEY
operation in Section 20.3, we will just set allark fields toFALSE.

A given Fibonacci heapl is accessed by a pointerin[H] to the root of a tree
containing a minimum key; this node is called thenimum nodeof the Fibonacci
heap. If a Fibonacci heaf is empty, thermin[H] = NIL.

The roots of all the trees in a Fibonacci heap are linked tagetising their
left andright pointers into a circular, doubly linked list called theot list of the
Fibonacci heap. The pointenin[H] thus points to the node in the root list whose
key is minimum. The order of the trees within a root list isitey.

We rely on one other attribute for a Fibonacci hddp the number of nodes
currently inH is kept inn[H].
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Potential function

As mentioned, we shall use the potential method of Sectio ttranalyze the
performance of Fibonacci heap operations. For a given Ritb@rheapH, we
indicate byt (H) the number of trees in the root list 6f and bym(H) the number
of marked nodes ifd. The potential of Fibonacci heap is then defined by

®(H) =t(H) +2m(H) . (20.1)

(We will gain some intuition for this potential function iregtion 20.3.) For exam-
ple, the potential of the Fibonacci heap shown in Figure 205+ 2-3 = 11. The
potential of a set of Fibonacci heaps is the sum of the patisntif its constituent
Fibonacci heaps. We shall assume that a unit of potentiapagifor a constant
amount of work, where the constant is sufficiently large teecdhe cost of any of
the specific constant-time pieces of work that we might entzu

We assume that a Fibonacci heap application begins with apsheThe initial
potential, therefore, is 0, and by equation (20.1), them@kis nonnegative at all
subsequent times. From equation (17.3), an upper boundeototal amortized
cost is thus an upper bound on the total actual cost for thees®g of operations.

Maximum degree

The amortized analyses we shall perform in the remainintiosecof this chapter
assume that there is a known upper bouyh) on the maximum degree of any
node in ann-node Fibonacci heap. Exercise 20.2-3 shows that when twely t
mergeable-heap operations are suppori2h) < [lgn]. In Section 20.3, we
shall show that when we supporePREASEKEY and DELETE as well,D(n) =
O(gn).

20.2 Mergeable-heap operations

In this section, we describe and analyze the mergeable-byations as imple-
mented for Fibonacci heaps. If only these operationsakEFHEAP, INSERT,
MINIMUM, EXTRACT-MIN, and INION—are to be supported, each Fibonacci
heap is simply a collection of “unordered” binomial treesn énordered bino-
mial treeis like a binomial tree, and it, too, is defined recursivelfjreTunordered
binomial treeUg consists of a single node, and an unordered binomialdgezon-
sists of two unordered binomial treblg_, for which the root of one is made into
anychild of the root of the other. Lemma 19.1, which gives prdipsrof binomial
trees, holds for unordered binomial trees as well, but Withfollowing variation
on property 4 (see Exercise 20.2-2):
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4'. For the unordered binomial trdgy, the root has degrek, which is greater
than that of any other node. The children of the root are robtsubtrees
Ug, Uy, ..., Uk_1 in some order.

Thus, if ann-node Fibonacci heap is a collection of unordered binomead, then
D(n) =lIgn.

The key idea in the mergeable-heap operations on Fibonaegishis to delay
work as long as possible. There is a performance trade-ofingnmplementa-
tions of the various operations. If the number of trees inkefacci heap is small,
then during an ETRACT-MIN operation we can quickly determine which of the
remaining nodes becomes the new minimum node. However, aawavith bi-
nomial heaps in Exercise 19.2-10, we pay a price for ensuhagthe number of
trees is small: it can take up t@(Ig n) time to insert a node into a binomial heap
or to unite two binomial heaps. As we shall see, we do not giteanconsolidate
trees in a Fibonacci heap when we insert a new node or unitbéaps. We save
the consolidation for the erRACT-MIN operation, which is when we really need
to find the new minimum node.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, thekk-FIB-HEAP procedure allocates and
returns the Fibonacci heap objddt wheren[H] = 0 andmin[H] = NiL; there
are no trees irH. Becausd (H) = 0 andm(H) = 0, the potential of the empty
Fibonacci heap isb(H) = 0. The amortized cost of MKE-FIB-HEAP is thus
equal to itsO(1) actual cost.

Inserting a node

The following procedure inserts noaento Fibonacci heapd, assuming that the
node has already been allocated and kiesftx] has already been filled in.

FIB-HEAP-INSERT(H, X)

1 degre¢x] < 0

2 p[x] < NIL

3 child[x] < NIL

4 left[x] < x

5 right[x] < x

6 marl{x] < FALSE

7 concatenate the root list containirgvith root list H
8 if minNH] = NIL or keyx] < keyfminH]]

9 thenminH] <« x
10 n[H] < n[H]+1
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Figure 20.2 Inserting a node into a Fibonacci hedp) A Fibonacci heapH . (b) Fibonacci heaj
after the node with key 21 has been inserted. The node bedtsvasn min-heap-ordered tree and
is then added to the root list, becoming the left sibling @f tbot.

After lines 1-6 initialize the structural fields of nodemaking it its own circular,
doubly linked list, line 7 adds to the root list ofH in O(1) actual time. Thus,
nodex becomes a single-node min-heap-ordered tree, and thusatkewed bino-
mial tree, in the Fibonacci heap. It has no children and isarked. Lines 8-9 then
update the pointer to the minimum node of Fibonacci hdapnecessary. Finally,
line 10 increments[ H] to reflect the addition of the new node. Figure 20.2 shows
a node with key 21 inserted into the Fibonacci heap of FigOré&.2

Unlike the BNOMIAL -HEAP-INSERT procedure, B-HEAP-INSERT makes no
attempt to consolidate the trees within the Fibonacci héfag.consecutive FB-
HEAP-INSERT operations occur, thensingle-node trees are added to the root list.

To determine the amortized cost ofsBFHEAP-INSERT, let H be the input Fi-
bonacci heap anHl’ be the resulting Fibonacci heap. Thefhl’) =t(H)+ 1 and
m(H’) = m(H), and the increase in potential is

(tH)+DH+2mH) —t(H)+2m(H)) =1.
Since the actual cost 9(1), the amortized cost i©(1) + 1 = O(1).

Finding the minimum node

The minimum node of a Fibonacci he&pis given by the pointemin[H], so we
can find the minimum node i@ (1) actual time. Because the potentialléfdoes
not change, the amortized cost of this operation is equ# t0(1) actual cost.

Uniting two Fibonacci heaps

The following procedure unites Fibonacci heapsand H,, destroyingH,; andH,
in the process. It simply concatenates the root listslpfand H, and then deter-
mines the new minimum node.
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FiB-HEAP-UNION (Hy, Hy)

H <« MAKE-FIB-HEAP()

min[H] < min[H4]

concatenate the root list f, with the root list ofH

if (min[H41] = NIL) or (minHy] # NiL and min[H,] < min[H4])
then min[H] < min[Hy]

N[H] < n[Hy] + n[H2]

free the object$d; and H,

return H

O~NOOT A WN PR

Lines 1-3 concatenate the root liststéf and H, into a new root listH. Lines
2, 4, and 5 set the minimum node Hf, and line 6 sets[H] to the total number
of nodes. The Fibonacci heap obje¢is and H, are freed in line 7, and line 8
returns the resulting Fibonacci he&h As in the RB-HEAP-INSERT procedure,
no consolidation of trees occurs.

The change in potential is

®(H) — (®(Hy) + ®(H2)
= (t(H)+2m(H)) — ((t(H1) + 2m(Hy)) + (t(Hz) + 2m(Hy)))
= 0,

becausé(H) = t(H;) +t(H,) andm(H) = m(H;) + m(H,). The amortized cost
of FIB-HEAP-UNION is therefore equal to it® (1) actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most caagld of the oper-
ations presented in this section. It is also where the ddlawark of consolidating
trees in the root list finally occurs. The following pseuddecextracts the mini-
mum node. The code assumes for convenience that when a negedged from
a linked list, pointers remaining in the list are updated,dminters in the extracted
node are left unchanged. It also uses the auxiliary proee@ansOLIDATE, which
will be presented shortly.
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FIB-HEAP-EXTRACT-MIN (H)
1 z<« minH]

2 ifz#NIL
3 then for each childx of z
4 do addx to the root list ofH
5 p[X] < NIL
6 removez from the root list ofH
7 if z=right[Zz]
8 thenminH] < NIL
9 else min[H] <« right[Z]
10 CONSOLIDATE(H)
11 n[H] < n[H] -1
12 return z

As shown in Figure 20.3,IB-HEAP-EXTRACT-MIN works by first making a root
out of each of the minimum node’s children and removing theimim node from
the root list. It then consolidates the root list by linkirgpts of equal degree until
at most one root remains of each degree.

We start in line 1 by saving a pointerto the minimum node; this pointer is
returned at the end. # = NiL, then Fibonacci heapl is already empty and
we are done. Otherwise, as in theNBMIAL -HEAP-EXTRACT-MIN procedure,
we delete node from H by making all ofz’s children roots ofH in lines 3-5
(putting them into the root list) and removirgfrom the root list in line 6. If
Z = right[Z] after line 6, thenz was the only node on the root list and it had no
children, so all that remains is to make the Fibonacci heagptyin line 8 before
returning z. Otherwise, we set the pointeninH] into the root list to point to
a node other thaaz (in this caseright[z]), which is not necessarily going to be
the new minimum node whenig~HEAP-EXTRACT-MIN is done. Figure 20.3(b)
shows the Fibonacci heap of Figure 20.3(a) after line 9 har performed.

The next step, in which we reduce the number of trees in thergitci heap, is
consolidatingthe root list ofH; this is performed by the call @NSOLIDATE(H).
Consolidating the root list consists of repeatedly execyte following steps until
every root in the root list has a distindegreevalue.

1. Find two rootsx andy in the root list with the same degree, whém|x] <
keyy].

2. Link y to x: removey from the root list, and makg a child ofx. This oper-
ation is performed by theIB-HEAP-LINK procedure. The fieldegre¢x] is
incremented, and the mark gnif any, is cleared.

The procedure ONSOLIDATE uses an auxiliary arrayA[0.. D(n[H])]; if
Ali] = v, theny is currently a root withdegreg¢y] =i.
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Figure 20.3 The action of FB-HEAP-EXTRACT-MIN. (@) A Fibonacci heafH. (b) The situation
after the minimum node is removed from the root list and its children are added tortiu list.
(c)—(e)The arrayA and the trees after each of the first three iterations ofath®op of lines 3—13 of
the procedure GNSOLIDATE. The root list is processed by starting at the node pointég tain[H]
and following right pointers. Each part shows the valuesuofand x at the end of an iteration.
(H—(h) The next iteration of thdor loop, with the values ofv and x shown at the end of each
iteration of thewhile loop of lines 6-12. Part (f) shows the situation after the firse through the
while loop. The node with key 23 has been linked to the node with keyhich is now pointed to
by x. In part (g), the node with key 17 has been linked to the nodle kéy 7, which is still pointed
to by x. In part (h), the node with key 24 has been linked to the nodk k8y 7. Since no node
was previously pointed to byA[3], at the end of thdor loop iteration, A[3] is set to point to the
root of the resulting tree(i)—(I) The situation after each of the next four iterations of fitreloop.
(m) Fibonacci heapH after reconstruction of the root list from the arrAyand determination of the
newmin[H] pointer.
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CONSOLIDATE(H)

1 fori < Oto D(n[H])

2 do A[i] < NIL

3 for each nodev in the root list ofH

4 dox < w

5 d < degregx]

6 while A[d] # NIL

7 doy « A[d] > Another node with the same degreexas

8 if keyx] > keyy]

9 then exchangex <> y
10 FB-HEAP-LINK (H, Y, X)
11 A[d] < NIL
12 d<«d+1
13 Ald] < X

14 min[H] < NIL
15 fori < Oto D(n[H])

16 do if Ali] # NIL

17 thenadd A[i] to the root list ofH

18 if min[H] = NIL orkey A[i]] < keyfmin[H]]
19 thenminH] < AJi]

FIB-HEAP-LINK (H, Y, X)

1 removey from the root list ofH
2 makey a child ofx, incrementingdegreéx]
3 mary] < FALSE

In detail, the @NSOLIDATE procedure works as follows. Lines 1-2 initialize
by making each entryiL. Thefor loop of lines 3—-13 processes each raan the
root list. After processing each roat, it ends up in a tree rooted at some noge
which may or may not be identical to. Of the processed roots, no others will
have the same degree asand so we will set array entnj[degreégx]] to point
to x. When thisfor loop terminates, at most one root of each degree will remain,
and the arrayA will point to each remaining root.

Thewhile loop of lines 6-12 repeatedly links the raobof the tree containing
nodew to another tree whose root has the same degreewagtil no other root has
the same degree. Thighile loop maintains the following invariant:

At the start of each iteration of thehile loop,d = degreéx].
We use this loop invariant as follows:

Initialization: Line 5 ensures that the loop invariant holds the first time ntere
the loop.
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Maintenance: In each iteration of thevhile loop, A[d] points to some rooy.

Becausad = degre¢x] = degregy], we want to linkx andy. Whichever of
x andy has the smaller key becomes the parent of the other as a o
link operation, and so lines 8-9 exchange the pointerssdady if necessary.
Next, we linky to x by the call FB-HEAP-LINK (H, y, X) in line 10. This call
incrementdegregx] but leavesdegre¢y] asd. Because nodg is no longer a
root, the pointer to it in arrayA is removed in line 11. Because the call oBF
HEAP-LINK increments the value afegre¢x], line 12 restores the invariant
thatd = degreéx].

Termination: We repeat thaevhile loop until A[d] = NiL, in which case there is
no other root with the same degreexas

After the while loop terminates, we sei[d] to x in line 13 and perform the next
iteration of thefor loop.

Figures 20.3(c)—(e) show the arrdyand the resulting trees after the first three
iterations of thdor loop of lines 3-13. In the next iteration of tii@ loop, three
links occur; their results are shown in Figures 20.3(f)—tyures 20.3(i)—(l) show
the result of the next four iterations of tfer loop.

All that remains is to clean up. Once tli@ loop of lines 3-13 completes,
line 14 empties the root list, and lines 15-19 reconstruicbin the arrayA. The
resulting Fibonacci heap is shown in Figure 20.3(m). Aftamsolidating the root
list, FIB-HEAP-EXTRACT-MIN finishes up by decrementing H] in line 11 and
returning a pointer to the deleted nod line 12.

Observe that if all trees in the Fibonacci heap are unordeirezmial trees be-
fore FB-HEAP-EXTRACT-MIN is executed, then they are all unordered binomial
trees afterward. There are two ways in which trees are cloargest, in lines 3-5
of FIB-HEAP-EXTRACT-MIN, each childx of root z becomes a root. By Exer-
cise 20.2-2, each new tree is itself an unordered binoneal tSecond, trees are
linked by FB-HEAP-LINK only if they have the same degree. Since all trees are
unordered binomial trees before the link occurs, two trelesse roots each hake
children must have the structureldf. The resulting tree therefore has the structure
of Uk+1.

We are now ready to show that the amortized cost of extrattigminimum
node of am-node Fibonacci heap ®(D(n)). Let H denote the Fibonacci heap
just prior to the FB-HEAP-EXTRACT-MIN operation.

The actual cost of extracting the minimum node can be acedufar as fol-
lows. An O(D(n)) contribution comes from there being at mastn) children of
the minimum node that are processed iBHHEAP-EXTRACT-MIN and from the
work in lines 1-2 and 14-19 of @\SOLIDATE. It remains to analyze the contri-
bution from thefor loop of lines 3—13. The size of the root list upon callingiG
SOLIDATE is at mostD (n) + t(H) — 1, since it consists of the origina{H ) root-
list nodes, minus the extracted root node, plus the childfeghe extracted node,
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which number at modD (n). Every time through thevhile loop of lines 6-12, one
of the roots is linked to another, and thus the total amountak performed in

thefor loop is at most proportional tB (n) + t(H). Thus, the total actual work in
extracting the minimum node (D (n) + t(H)).

The potential before extracting the minimum node sl ) + 2m(H), and the
potential afterward is at mogsD (n) + 1) + 2m(H), since at mosD (n) + 1 roots
remain and no nodes become marked during the operation. mbeized cost is
thus at most

O(D(n) +t(H)) + (D(N) + 1) + 2m(H)) — (t(H) 4+ 2m(H))
= O(D()) + O(t(H)) — t(H)
O(b™)),

since we can scale up the units of potential to dominate timstaat hidden in
O(t(H)). Intuitively, the cost of performing each link is paid for bye reduction

in potential due to the link’s reducing the number of rootsamg. We shall see
in Section 20.4 thaD(n) = O(lgn), so that the amortized cost of extracting the
minimum node iO(lg n).

Exercises

20.2-1
Show the Fibonacci heap that results from callingHHEAP-EXTRACT-MIN on
the Fibonacci heap shown in Figure 20.3(m).

20.2-2
Prove that Lemma 19.1 holds for unordered binomial treetsyiih property 4in
place of property 4.

20.2-3
Show that if only the mergeable-heap operations are sugghattie maximum de-
greeD(n) in ann-node Fibonacci heap is at masg n|.

20.2-4

Professor McGee has devised a new data structure based onaEdd heaps.
A McGee heap has the same structure as a Fibonacci heap apdrtsuphe

mergeable-heap operations. The implementations of theatipes are the same
as for Fibonacci heaps, except that insertion and unioropartonsolidation as
their last step. What are the worst-case running times ofatipes on McGee
heaps? How novel is the professor’s data structure?
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20.2-5

Argue that when the only operations on keys are comparingkeys (as is the
case for all the implementations in this chapter), not althef mergeable-heap
operations can run i@ (1) amortized time.

20.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node im@n&tci heap
in O(1) amortized time and how to delete any node frormarode Fibonacci heap
in O(D(n)) amortized time. These operations do not preserve the pyoiat all
trees in the Fibonacci heap are unordered binomial treesy @te close enough,
however, that we can bound the maximum dedbga) by O(lgn). Proving this
bound, which we shall do in Section 20.4, will imply thaBFHEAP-EXTRACT-
MIN and FB-HEAP-DELETE run in O(Ilg n) amortized time.

Decreasing a key

In the following pseudocode for the operatiolFHEAP-DECREASEKEY, we
assume as before that removing a node from a linked list doeshange any of
the structural fields in the removed node.

FiB-HEAP-DECREASEKEY (H, X, k)

1 if k > keyfx]

2 then error “new key is greater than current key”
3 keyx] <k

4y < p[x]

5 if y # NIL andkey[Xx] < keyy]
6 then CuT(H, X, y)

7 CASCADING-CUT(H, y)
8 if keyx] < keyymin[H]]

9 thenmin[H] < x

CUT(H, x,y)

1 removex from the child list ofy, decrementinglegregy]
2 addx to the root list ofH

3 p[x] < NIL

4 marlx] < FALSE
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CASCADING-CUT(H, y)

1 z< plyl

2 ifz#NIL

3 then if marl{y] = FALSE

4 thenmarl{y] < TRUE

5 else CuT(H, v, 2

6 CASCADING-CUT(H, 2)

The FB-HEAP-DECREASEKEY procedure works as follows. Lines 1-3 ensure
that the new key is no greater than the current key afd then assign the new key
to x. If x is a root or ifkeyx] > keyfy], wherey is x’s parent, then no structural
changes need occur, since min-heap order has not beerediolahes 4-5 test for
this condition.

If min-heap order has been violated, many changes may oddiar.start by
cutting x in line 6. The QT procedure “cuts” the link betweenand its pareny,
makingx a root.

We use thamark fields to obtain the desired time bounds. They record a little
piece of the history of each node. Suppose that the followumnts have happened
to nodex:

1. at some timex was a root,
2. thenx was linked to another node,

3. then two children ok were removed by cuts.

As soon as the second child has been lost, wexdubm its parent, making it a
new root. The fieldnarl{x] is TRUE if steps 1 and 2 have occurred and one child
of x has been cut. TheWr procedure, therefore, clearsari{x] in line 4, since it
performs step 1. (We can now see why line 3 & fHEAP-LINK clearsmarl{y]:
nodey is being linked to another node, and so step 2 is being peddrimhe next
time a child ofy is cut,marl{ y] will be set toTRUE.)

We are not yet done, becausenight be the second child cut from its paregnt
since the time thay was linked to another node. Therefore, line 7 c FHEAP-
DeECREASEKEY performs acascading-cutoperation ony. If y is a root, then
the test in line 2 of @SCADING-CUT causes the procedure to just returny lis
unmarked, the procedure marks it in line 4, since its firsidchas just been cut,
and returns. Ify is marked, however, it has just lost its second chyids cut in
line 5, and QsSCADING-CUT calls itself recursively in line 6 og’s parentz. The
CASCADING-CUT procedure recurses its way up the tree until either a roohor a
unmarked node is found.

Once all the cascading cuts have occurred, lines 8—9HEAP-DECREASE
KEY finish up by updatingnin[H] if necessary. The only node whose key changed
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Figure 20.4 Two calls of FiB-HEAP-DECREASEKEY. (@) The initial Fibonacci heap(b) The
node with key 46 has its key decreased to 15. The node becoroes and its parent (with key 24),
which had previously been unmarked, becomes marked-(e) The node with key 35 has its key
decreased to 5. In part (c), the node, now with key 5, become®ta Its parent, with key 26,
is marked, so a cascading cut occurs. The node with key 26tifam its parent and made an
unmarked root in (d). Another cascading cut occurs, sineentide with key 24 is marked as well.
This node is cut from its parent and made an unmarked rootrin(@a The cascading cuts stop at
this point, since the node with key 7 is a root. (Even if thisi@evere not a root, the cascading cuts
would stop, since it is unmarked.) The result of the fHEAP-DECREASEKEY operation is shown
in part (e), withmin[H] pointing to the new minimum node.

was the nod whose key decreased. Thus, the new minimum node is either the
original minimum node or node.

Figure 20.4 shows the execution of two calls 0B FHEAP-DECREASEKEY,
starting with the Fibonacci heap shown in Figure 20.4(a)e Titst call, shown
in Figure 20.4(b), involves no cascading cuts. The secoftid staown in Fig-
ures 20.4(c)—(e), invokes two cascading cuts.

We shall now show that the amortized cost oB fFHEAP-DECREASEKEY is
only O(1). We start by determining its actual cost. ThefHEAP-DECREASE
KEY procedure take® (1) time, plus the time to perform the cascading cuts. Sup-
pose that @SCADING-CUT is recursively called times from a given invocation
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of FIB-HEAP-DECREASEKEY. Each call of @QSCADING-CUT takesO(1) time
exclusive of recursive calls. Thus, the actual costie-HEAP-DECREASEKEY,
including all recursive calls, i©(c).

We next compute the change in potential. Iketdenote the Fibonacci heap
just prior to the FB-HEAP-DECREASEKEY operation. Each recursive call of
CASCADING-CUT, except for the last one, cuts a marked node and clears the mar
bit. Afterward, there are(H)+ctrees (the original(H) treesc—1 trees produced
by cascading cuts, and the tree roote”)atnd at mosi(H) — c+2 marked nodes
(c—1 were unmarked by cascading cuts and the last calhsfc2DING-CUT may
have marked a node). The change in potential is therefor@st m

(t(H)+co+2m(H) —c+2)—-tH)+2m(H)) =4—c.
Thus, the amortized cost ofiB~HEAP-DECREASEKEY is at most
Oc)+4—-c=001),

since we can scale up the units of potential to dominate thstant hidden if©(c).

You can now see why the potential function was defined to dekuterm that is
twice the number of marked nodes. When a marked noidecut by a cascading
cut, its mark bit is cleared, so the potential is reduced b@@&e unit of potential
pays for the cut and the clearing of the mark bit, and the atindrcompensates
for the unit increase in potential due to nogleecoming a root.

Deleting a node

It is easy to delete a node from amode Fibonacci heap i®(D(n)) amortized
time, as is done by the following pseudocode. We assumettbed ts no key value
of —oo currently in the Fibonacci heap.

FIB-HEAP-DELETE(H, X)

1 FiB-HEAP-DECREASEKEY (H, X, —00)
2 FIB-HEAP-EXTRACT-MIN (H)

FiB-HEAP-DELETE is analogous to BIOMIAL -HEAP-DELETE. It makesx be-
come the minimum node in the Fibonacci heap by giving it a uslig small key
of —oco. Nodex is then removed from the Fibonacci heap by the-HEAP-
EXTRACT-MIN procedure. The amortized time ofd~HEAP-DELETE is the sum
of the O(1) amortized time of B-HEAP-DECREASEKEY and the O(D(n))
amortized time of B-HEAP-EXTRACT-MIN. Since we shall see in Section 20.4
thatD(n) = O(lgn), the amortized time of B-HEAP-DELETE is O(lgn).
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Exercises

20.3-1

Suppose that a root in a Fibonacci heap is marked. Explain hewcame to be
a marked root. Argue that it doesn’t matter to the analysa$xtis marked, even
though it is not a root that was first linked to another nodethed lost one child.

20.3-2
Justify theO(1) amortized time of B-HEAP-DECREASEKEY as an average cost
per operation by using aggregate analysis.

20.4 Bounding the maximum degree

To prove that the amortized time ofis~HEAP-EXTRACT-MIN and HB-HEAP-
DELETE is O(lgn), we must show that the upper boubBdn) on the degree of
any node of am-node Fibonacci heap ®(Ign). By Exercise 20.2-3, when all
trees in the Fibonacci heap are unordered binomial tieés) = |Ign]. The cuts
that occur in FBB-HEAP-DECREASEKEY, however, may cause trees within the
Fibonacci heap to violate the unordered binomial tree ptegse In this section,
we shall show that because we cut a node from its parent asasoibioses two
children, D(n) is O(lgn). In particular, we shall show thdd(n) < [log,n],
wherep = (1+ /5)/2.

The key to the analysis is as follows. For each nedeithin a Fibonacci heap,
define sizéx) to be the number of nodes, includingtself, in the subtree rooted
at x. (Note thatx need not be in the root list—it can be any node at all.) We
shall show that siz&) is exponential irdegre¢x]. Bear in mind thadegre¢x] is
always maintained as an accurate count of the degrge of

Lemma 20.1

Let x be any node in a Fibonacci heap, and supposedbate¢x] = k. Let
V1, V2, . .., Yk denote the children of in the order in which they were linked tq
from the earliest to the latest. Theaegredy,] > 0 anddegredy;] > i — 2 for

i=23...,k
Proof Obviously,degregy,] > 0.

Fori > 2, we note that whery; was linked tox, all of y;, yo, ..., Vi_1 were
children ofx, so we must have hadkegre¢x] =i — 1. Nodey; is linked tox only
if degreg¢x] = degregy;], so we must have also hatkgreg¢y;] = i — 1 at that

time. Since then, nodg has lost at most one child, since it would have been cut
from x if it had lost two children. We conclude thdéegregy;] > i — 2. [
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We finally come to the part of the analysis that explains theeaFibonacci
heaps.” Recall from Section 3.2 that foe= 0, 1, 2, . . ., thekth Fibonacci number
is defined by the recurrence

0 ifk=0,
Fe=11 ifk=1,
Froi+ Fp ifk>2.

The following lemma gives another way to exprégs

Lemma 20.2
For all integersk > 0,

k

Fa=1+> F.
i=0

Proof The proof is by induction ok. Whenk = 0,
0
1+ F = 14F
= 140
=1
= k.
-1

We now assume the inductive hypothesis that; = 1+ Zik:o Fi, and we have
Feoo = Fe+ Faga

Fi+ (1+_ki|=i>

i=0

k
— 1+ZFi. -

The following lemma and its corollary complete the analydikey use the in-
equality (proved in Exercise 3.2-7)

k
Fipo > 07,

where¢ is the golden ratio, defined in equation (3.22)¢as= (1 + +/5)/2 =
1.61803....



20.4 Bounding the maximum degree 495

Lemma 20.3
Let x be any node in a Fibonacci heap, anddet degre¢x]. Then, sizéx) >
Feiz > 0%, whereg = (14 /5)/2.

Proof Lets, denote the minimum possible value of sizeover all nodes such
thatdegred¢z] = k. Trivially, 55 = 1,5, = 2, ands, = 3. The numbesy is at
most sizéx), and clearly, the value of increases monotonically witk. As in
Lemma 20.1, leyy, Vo, ..., Yk denote the children of in the order in which they
were linked tox. To compute a lower bound on s{z®8, we count one fox itself
and one for the first chilg; (for which siz€y,) > 1), giving

sizeX) >

k
= 24+ ) Stegrety]
i=2

k
> 2+ ) s,

where the last line follows from Lemma 20.1 (so thdagre¢y;] > i — 2) and the
monotonicity ofs, (S0 thatSyegregy] = S—2)-

We now show by induction ok thats, > Fy,, for all nonnegative integek.
The bases, fok = 0 andk = 1, are trivial. For the inductive step, we assume that
k>2andthas > F,,fori =0,1,...,k—1. We have

k
S = 24+) so

v

N

+
|.M>\— yl\_l;

n

= Fo2 (by Lemma 20.2) .

Thus, we have shown that sizg¢ > s > Fyyo > k. ]

Corollary 20.4
The maximum degre® (n) of any node in am-node Fibonacci heap ®(lgn).

Proof Let x be any node in am-node Fibonacci heap, and let= degreéx].
By Lemma 20.3, we hava > sizex) > ¢¥. Taking basep logarithms gives
usk < log,n. (In fact, becausé is an integerk < [log, n].) The maximum
degreeD (n) of any node is thu®©(lg n). [
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Exercises
20.4-1
Professor Pinocchio claims that the height ohamode Fibonacci heap ©(lg n).
Show that the professor is mistaken by exhibiting, for angitp@ integern, a
sequence of Fibonacci-heap operations that creates adéitidmeap consisting of
just one tree that is a linear chainmhodes.
20.4-2
Suppose we generalize the cascading-cut rule to cut a xddem its parent as
soon as it loses itkth child, for some integer constakt (The rule in Section 20.3
usesk = 2.) For what values dfis D(n) = O(lgn)?

Problems

20-1 Alternative implementation of deletion

Professor Pisano has proposed the following variant of tiseHEAP-DELETE
procedure, claiming that it runs faster when the node beabeteld is not the node
pointed to bymin H].

PIsANO-DELETE(H, Xx)
1 if x=min[H]

2 then FIB-HEAP-EXTRACT-MIN (H)

3 else y < p[X]

4 if y £ NIL

5 then CuT(H, X, y)

6 CASCADING-CUT(H, y)

7 addx’s child list to the root list ofH
8 removex from the root list ofH

a. The professor’s claim that this procedure runs faster iedasrtly on the as-
sumption that line 7 can be performed@1) actual time. What is wrong with
this assumption?

b. Give a good upper bound on the actual time afANO-DELETE whenx is not
min[H]. Your bound should be in terms d&gre¢x] and the numbec of calls
to the CASCADING-CUT procedure.

c. Suppose that we callPaANO-DELETE(H, X), and letH’ be the Fibonacci heap
that results. Assuming that nodteis not a root, bound the potential &f in
terms ofdegre¢x], c, t(H), andm(H).
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d. Conclude that the amortized time fordJANO-DELETE is asymptotically no
better than for B-HEAP-DELETE, even wherx # min[H].

20-2 More Fibonacci-heap operations
We wish to augment a Fibonacci hebpto support two new operations without
changing the amortized running time of any other Fibonaeeip operations.

a. The operation B-HEAP-CHANGE-KEY (H, X, k) changes the key of node
to the valuek. Give an efficient implementation ofil~HEAP-CHANGE-KEY,
and analyze the amortized running time of your implememtator the cases
in whichk is greater than, less than, or equakéy x].

b. Give an efficient implementation ofiB-HEAP-PRUNE(H, r), which deletes
min(r, n[H]) nodes fromH. Which nodes are deleted should be arbitrary. An-
alyze the amortized running time of your implementatidfin(: You may need
to modify the data structure and potential function.)

Chapter notes

Fibonacci heaps were introduced by Fredman and Tarjan Tof&ir paper also de-
scribes the application of Fibonacci heaps to the problenssngle-source short-
est paths, all-pairs shortest paths, weighted bipartitemray, and the minimum-
spanning-tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan ¢&ljEloped “relaxed
heaps” as an alternative to Fibonacci heaps. There are tvigtiga of relaxed
heaps. One gives the same amortized time bounds as Fibomeaps. The
other allows ECREASEKEY to run in O(1) worst-case (not amortized) time and
EXTRACT-MIN and DeLETE to run in O(Ilgn) worst-case time. Relaxed heaps
also have some advantages over Fibonacci heaps in patgtetiams.

See also the chapter notes for Chapter 6 for other datawstesahat support fast
DeECREASEKEY operations when the sequence of values returnedXmrECT-
MIN calls are monotonically increasing over time and the dagairstegers in a
specific range.



