17

Amortized Analysis

In anamortized analysisthe time required to perform a sequence of data-structure
operations is averaged over all the operations performedorfized analysis can
be used to show that the average cost of an operation is shoalé averages over
a sequence of operations, even though a single operatibmutie sequence might
be expensive. Amortized analysis differs from average-eamlysis in that prob-
ability is not involved; an amortized analysis guarantéesaverage performance
of each operation in the worst case

The first three sections of this chapter cover the three nwatrron techniques
used in amortized analysis. Section 17.1 starts with ag¢eegnalysis, in which
we determine an upper bouidn) on the total cost of a sequencerobperations.
The average cost per operation is tHe¢n)/n. We take the average cost as the
amortized cost of each operation, so that all operations ba same amortized
cost.

Section 17.2 covers the accounting method, in which we oheteran amortized
cost of each operation. When there is more than one type ohtipe, each type of
operation may have a different amortized cost. The accogimtiethod overcharges
some operations early in the sequence, storing the ovgelaar “prepaid credit”
on specific objects in the data structure. The credit is usted in the sequence to
pay for operations that are charged less than they actuadly c

Section 17.3 discusses the potential method, which isti&g@tcounting method
in that we determine the amortized cost of each operatiomadovercharge op-
erations early on to compensate for undercharges latempdieatial method main-
tains the credit as the “potential energy” of the data stmecas a whole instead of
associating the credit with individual objects within thega structure.

We shall use two examples to examine these three methods.isGnstack
with the additional operation MLTIPOP, which pops several objects at once. The
other is a binary counter that counts up from 0 by means of itiggesoperation
INCREMENT.

While reading this chapter, bear in mind that the chargemm@sd during an
amortized analysis are for analysis purposes only. Theg neeand should not

406

Chapter 17 Amortized Analysis

appear in the code. If, for example, a credit is assigned tmbgettx when using
the accounting method, there is no need to assign an apat®@rount to some
attributecredit[x] in the code.

The insight into a particular data structure gained by pering an amortized
analysis can help in optimizing the design. In Section 1fbdexample, we shall
use the potential method to analyze a dynamically exparatidgcontracting table.

17.1 Aggregate analysis

In aggregate analysiswe show that for alh, a sequence afi operations takes
worst-casetime T (n) in total. In the worst case, the average costaaortized
cost per operation is therefor€(n)/n. Note that this amortized cost applies to
each operation, even when there are several types of apesdti the sequence.
The other two methods we shall study in this chapter, thewttotg method and
the potential method, may assign different amortized cwstdifferent types of
operations.

Stack operations

In our first example of aggregate analysis, we analyze sthighshave been aug-
mented with a new operation. Section 10.1 presented theunaamental stack
operations, each of which tak€x1) time:

PUSH(S, x) pushes object onto stackS.
Por(S) pops the top of stack and returns the popped object.

Since each of these operations rungiil) time, let us consider the cost of each
to be 1. The total cost of a sequencend?usH and FopP operations is therefone,
and the actual running time foroperations is therefor@ (n).

Now we add the stack operation WITIPOP(S, k), which removes thé top
objects of stackS, or pops the entire stack if it contains fewer thanbjects. In
the following pseudocode, the operatiom8K-EMPTY returnsTrRUE if there are
no objects currently on the stack, apsi SE otherwise.

MULTIPOP(S, k)

1 while not STACK-EMPTY (S) andk # 0
2 do Popr(S)
3 k«~k-1

Figure 17.1 shows an example ofudriPoP.

17.1 Aggregate analysis 407

top > 23
17
6
39
10 top> 10
47 47

(@) (b) ©

Figure 17.1 The action of MuLTIPOP 0N a stackS, shown initially in(a). The top 4 objects are
popped by MILTIPOR(S, 4), whose result is shown ifb). The next operation is MLTIPOR(S, 7),
which empties the stack—shown (c)}—since there were fewer than 7 objects remaining.

What is the running time of MLTIPOP(S, k) on a stack of objects? The actual
running time is linear in the number ofo® operations actually executed, and thus
it suffices to analyze MLTIPOP in terms of the abstract costs of 1 each farsh
and Pop. The number of iterations of th&hile loop is the number mig, k) of
objects popped off the stack. For each iteration of the loap,call is made to &r
inline 2. Thus, the total cost of MLTIPOP is min(s, k), and the actual running time
is a linear function of this cost.

Let us analyze a sequencerPusH, Pop, and MULTIPOP operations on an ini-
tially empty stack. The worst-case cost of asMtIPOP operation in the sequence
is O(n), since the stack size is at mast The worst-case time of any stack opera-
tion is thereforeD(n), and hence a sequencernbperations cost® (n?), since we
may haveO(n) MULTIPOP operations costing (n) each. Although this analysis
is correct, theO(n?) result, obtained by considering the worst-case cost of each
operation individually, is not tight.

Using aggregate analysis, we can obtain a better upper lbahdonsiders the
entire sequence af operations. In fact, although a singleuvriPop operation
can be expensive, any sequencend®?usH, Pop, and MULTIPOP operations on
an initially empty stack can cost at mddtn). Why? Each object can be popped
at most once for each time it is pushed. Therefore, the nuwiémes that BpP
can be called on a nonempty stack, including calls withinUviPoP, is at most
the number of BsH operations, which is at most. For any value ofn, any
sequence of PUsH, Pop, and MULTIPOP operations takes a total @(n) time.
The average cost of an operation@gn)/n = O(1). In aggregate analysis, we
assign the amortized cost of each operation to be the aveasgeln this example,
therefore, all three stack operations have an amortizedo€@3(1).

We emphasize again that although we have just shown thavénage cost, and
hence running time, of a stack operationQd%1), no probabilistic reasoning was
involved. We actually showed waorst-casebound of O(n) on a sequence af

408 Chapter 17 Amortized Analysis

operations. Dividing this total cost byyielded the average cost per operation, or
the amortized cost.

Incrementing a binary counter

As another example of aggregate analysis, consider thégmnotf implementing
ak-bit binary counter that counts upward from 0. We use an aff@y . k — 1] of
bits, wherdengtH A] = k, as the counter. A binary numbgerthat is stored in the
counter has its lowest-order bit 0] and its highest-order bit id\[k — 1], so that
X = !‘;& Ali] - 2. Initially, x = 0, and thusA[i] =0 fori =0,1,...,k—1. To
add 1 (modulo ®) to the value in the counter, we use the following procedure.

INCREMENT(A)
1 i<«0

2 whilei < lengtfAlandAfi] =1
3 do Ali] <~ 0

4 I <—i+1

5 ifi < length A

6 then Ali] < 1

Figure 17.2 shows what happens to a binary counter as itriermented 16 times,
starting with the initial value 0 and ending with the value 1At the start of
each iteration of thevhile loop in lines 2—4, we wish to add a 1 into position

If Ali] =1, then adding 1 flips the bit to 0 in positiorand yields a carry of 1,
to be added into position+ 1 on the next iteration of the loop. Otherwise, the
loop ends, and then, if < k, we know thatA[i] = 0, so that adding a 1 into posi-
tioni, flipping the 0 to a 1, is taken care of in line 6. The cost of dactREMENT
operation is linear in the number of bits flipped.

As with the stack example, a cursory analysis yields a bohatli$ correct but
not tight. A single execution oflNCREMENT takes time® (k) in the worst case, in
which arrayA contains all 1's. Thus, a sequencerofNCREMENT operations on
an initially zero counter takes tim@(nk) in the worst case.

We can tighten our analysis to yield a worst-case cogD@f) for a sequence
of n INCREMENTS by observing that not all bits flip each timei¢REMENT is
called. As Figure 17.2 shows\[0] does flip each timeNCREMENT is called.
The next-highest-order bi\[1], flips only every other time: a sequencerofN-
CREMENT operations on an initially zero counter caugg4] to flip [n/2] times.
Similarly, bit A[2] flips only every fourth time, otn/4] times in a sequence of
INCREMENTS. In general, foi =0,1,..., |Ign], bit A[i] flips In/2'| times in a
sequence ofl INCREMENT operations on an initially zero counter. Ros [Ign],

17.1 Aggregate analysis 409

Counter Total
value VQ\V@V@%&?@?@?\\’\V\Q\ cost
0 0000O0O0O0O 0
1 0000O0O0DO01 1
2 0000O0OO010 3
3 000O0O0OO011 4
4 0000O010/0 7
5 00000101 8
6 00000110 10
7 00000111 11
8 00001000 15
9 00001001 16
10 00001010 18
11 00001011 19
12 00001100 22
13 00001101 23
14 00001110 25
15 00001111 26
16 00010000 31

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a secgief 16 NCREMENT
operations. Bits that flip to achieve the next value are sthad@@e running cost for flipping bits is
shown at the right. Notice that the total cost is never maaa thvice the total number oNICREMENT
operations.

bit Ali] never flips at all. The total number of flips in the sequendaus

llgn] n 00 1

Yzl < X3

i=0 i=0
= 2n,

by equation (A.6). The worst-case time for a sequencel SCREMENT operations
on an initially zero counter is therefo@(n). The average cost of each operation,
and therefore the amortized cost per operatio®(8)/n = O(1).

Exercises

17.1-1

If the set of stack operations included auMIPUSH operation, which pushds
items onto the stack, would th@(1) bound on the amortized cost of stack opera-
tions continue to hold?

17.1-2
Show that if a IECREMENT operation were included in tHebit counter example,
n operations could cost as much@snk) time.

410

Chapter 17 Amortized Analysis

17.1-3

A sequence oh operations is performed on a data structure. itheoperation
costsi if i is an exact power of 2, and 1 otherwise. Use aggregate amdtysi
determine the amortized cost per operation.

17.2 The accounting method

In the accounting methodof amortized analysis, we assign differing charges to
different operations, with some operations charged motessrthan they actually
cost. The amount we charge an operation is calledrtsrtized cost When an
operation’s amortized cost exceeds its actual cost, tHereifce is assigned to
specific objects in the data structurecasdit Credit can be used later on to help
pay for operations whose amortized cost is less than thalahcost. Thus, one
can view the amortized cost of an operation as being sphitdsn its actual cost
and credit that is either deposited or used up. This methedrigdifferent from
aggregate analysis, in which all operations have the sanoetiaed cost.

One must choose the amortized costs of operations carelfulg want analysis
with amortized costs to show that in the worst case the aeeragt per operation
is small, the total amortized cost of a sequence of opematinast be an upper
bound on the total actual cost of the sequence. Moreoven, @&ggregate analysis,
this relationship must hold for all sequences of operatitinge denote the actual
cost of thei th operation by; and the amortized cost of th#h operation byc;, we
require

ia > Xn:ci (17.1)
i=1 i=1

for all sequences af operations. The total credit stored in the data structutleeis
difference between the total amortized cost and the totabhcost, ory |, G —
Zi”:l ¢i. By inequality (17.1), the total credit associated with tfega structure
must be nonnegative at all times. If the total credit were elewed to become
negative (the result of undercharging early operationk thié promise of repaying
the account later on), then the total amortized costs ieduak that time would be
below the total actual costs incurred; for the sequence efatipns up to that time,
the total amortized cost would not be an upper bound on thaédotual cost. Thus,
we must take care that the total credit in the data structewembecomes negative.

Stack operations

To illustrate the accounting method of amortized analystsjs return to the stack
example. Recall that the actual costs of the operations were

17.2 The accounting method 411

PusH 1,
Pop 1,
MuLTiPOP minck,s) ,

wherek is the argument supplied to BiTIPOP ands is the stack size when it is
called. Let us assign the following amortized costs:

PUsH 2,
PopP 0,
MuLTiPOP O.

Note that the amortized cost of MTIPOP is a constant (0), whereas the actual
cost is variable. Here, all three amortized costs@(&), although in general the
amortized costs of the operations under consideration nfig@y dsymptotically.

We shall now show that we can pay for any sequence of staclaipes by
charging the amortized costs. Suppose we use a dollar bi#ipieesent each unit
of cost. We start with an empty stack. Recall the analogy ofiSe 10.1 between
the stack data structure and a stack of plates in a cafeidffien we push a plate
on the stack, we use 1 dollar to pay the actual cost of the pogdlauee left with a
credit of 1 dollar (out of the 2 dollars charged), which we pattop of the plate.

At any point in time, every plate on the stack has a dollar eélitron it.

The dollar stored on the plate is prepayment for the cost ppjg it from the
stack. When we execute @P operation, we charge the operation nothing and pay
its actual cost using the credit stored in the stack. To pdpte pve take the dollar
of credit off the plate and use it to pay the actual cost of theration. Thus, by
charging the BsH operation a little bit more, we needn’t charge theP®peration
anything.

Moreover, we needn’t charge MTIPOP operations anything either. To pop the
first plate, we take the dollar of credit off the plate and usepay the actual cost of
a Popoperation. To pop a second plate, we again have a dollar dit crethe plate
to pay for the PP operation, and so on. Thus, we have always charged enough up
front to pay for MuLTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always hasaegative number of
plates, we have ensured that the amount of credit is alwaysegative. Thus, for
anysequence afi PusH, Pop, and MULTIPOP operations, the total amortized cost
is an upper bound on the total actual cost. Since the totattazad cost isO(n),
so is the total actual cost.

Incrementing a binary counter

As another illustration of the accounting method, we araly'e NCREMENT Op-
eration on a binary counter that starts at zero. As we obderadier, the running
time of this operation is proportional to the number of bifgdéd, which we shall

412

Chapter 17 Amortized Analysis

use as our cost for this example. Let us once again use a @dlléan represent
each unit of cost (the flipping of a bit in this example).

For the amortized analysis, let us charge an amortized é&tollars to set a
bit to 1. When a bit is set, we use 1 dollar (out of the 2 dolldrarged) to pay
for the actual setting of the bit, and we place the other doltethe bit as credit to
be used later when we flip the bit back to 0. At any point in tiexegry 1 in the
counter has a dollar of credit on it, and thus we needn’t @hargthing to reset a
bit to 0; we just pay for the reset with the dollar bill on thé bi

The amortized cost oNCREMENT can now be determined. The cost of resetting
the bits within thewhile loop is paid for by the dollars on the bits that are reset.
At most one bit is set, in line 6 oNCREMENT, and therefore the amortized cost
of an INCREMENT operation is at most 2 dollars. The number of 1's in the caunte
is never negative, and thus the amount of credit is alwaysegative. Thus, fon
INCREMENT operations, the total amortized cost@gn), which bounds the total
actual cost.

Exercises

17.2-1

A sequence of stack operations is performed on a stack wiamseeyer exceeds

After everyk operations, a copy of the entire stack is made for backupgsep
Show that the cost ai stack operations, including copying the stackQig) by

assigning suitable amortized costs to the various stackatipes.

17.2-2
Redo Exercise 17.1-3 using an accounting method of analysis

17.2-3

Suppose we wish not only to increment a counter but also &t et zero (i.e.,
make all bits in it 0). Show how to implement a counter as aayaof bits so
that any sequence ofINCREMENT and RESET operations takes tim@®(n) on an
initially zero counter. int: Keep a pointer to the high-order 1.)

17.3 The potential method

Instead of representing prepaid work as credit stored vg#tific objects in the
data structure, thpotential methodof amortized analysis represents the prepaid
work as “potential energy,” or just “potential,” that canfeéeased to pay for future
operations. The potential is associated with the datatsiieias a whole rather than
with specific objects within the data structure.

17.3 The potential method 413

The potential method works as follows. We start with anahitiata structur®,
on whichn operations are performed. For each= 1,2,...,n, we letc be
the actual cost of theth operation and; be the data structure that results after
applying theith operation to data structui@;_;. A potential function ® maps
each data structurB; to a real number (D;), which is thepotential associated
with data structureD;. Theamortized cost; of theith operation with respect to
potential functiond is defined by

G =¢ + P(Dj) — P(Di_y) . (17.2)

The amortized cost of each operation is therefore its actslplus the increase in
potential due to the operation. By equation (17.2), thd toteortized cost of the
operations is

Y& = D@+ D) - d(Di-y)
i=1

i=1

n
= Zci + &(Dy) — ®(Dg) . (17.3)
i=1
The second equality follows from equation (A.9), sincednd;) terms telescope.

If we can define a potential functio® so that® (D) > ®(Dg), then the total
amortized cosp [, G is an upper bound on the total actual cdst ; ¢. In prac-
tice, we do not always know how many operations might be perdo. Therefore,
if we require thatb (D;) > & (Do) for all i, then we guarantee, as in the accounting
method, that we pay in advance. It is often convenient to defifD) to be 0 and
then to show thatb(D;) > O for alli. (See Exercise 17.3-1 for an easy way to
handle cases in whici (Dg) # 0.)

Intuitively, if the potential differenceb(D;) — ®(D;_;) of theith operation is
positive, then the amortized cagtrepresents an overcharge to thie operation,
and the potential of the data structure increases. If thenpial difference is neg-
ative, then the amortized cost represents an underchatte itthh operation, and
the actual cost of the operation is paid by the decrease ipdtemntial.

The amortized costs defined by equations (17.2) and (17@@ndkon the choice
of the potential functionb. Different potential functions may yield different amor-
tized costs yet still be upper bounds on the actual costsieTdre often trade-offs
that can be made in choosing a potential function; the baehgal function to use
depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once agaihéostxample of the stack
operations BsH, Popr, and MuLTIPOP. We define the potential functio® on a
stack to be the number of objects in the stack. For the ematk 85 with which

414 Chapter 17 Amortized Analysis

we start, we hava (Dg) = 0. Since the number of objects in the stack is never
negative, the stack; that results after theth operation has nonnegative potential,
and thus
®[Di)) > 0

® (Do) .
The total amortized cost of operations with respect @ therefore represents an
upper bound on the actual cost.

Let us now compute the amortized costs of the various stagtatipns. If theth
operation on a stack containirsgobjects is a BSH operation, then the potential
difference is
®(Di)) - ®(Di-1)) = (s+1)-—s

1.

By equation (17.2), the amortized cost of this$® operation is

o~

G = ¢+ 9D —2(Di-y)

1+1

2.
Suppose that theth operation on the stack is BATIPOP(S, k) and thatk’ =
min(k, s) objects are popped off the stack. The actual cost of the bpere k',
and the potential difference is
®(Dj) — ®(Dj_1) = K .

Thus, the amortized cost of thelTIPOP operation is

o~

G = G+ ®(Di)— P(Di-1)
— k/_k/
0.

Similarly, the amortized cost of an ordinarypPoperation is 0.

The amortized cost of each of the three operation®(%), and thus the total
amortized cost of a sequenceradperations i€ (n). Since we have already argued
that ®(D;) > ®(Dyg), the total amortized cost af operations is an upper bound
on the total actual cost. The worst-case cost operations is therefor®(n).

Incrementing a binary counter

As another example of the potential method, we again loakcagimenting a binary
counter. This time, we define the potential of the countardfteith INCREMENT
operation to bdy;, the number of 1's in the counter after tith operation.

17.3 The potential method 415

Let us compute the amortized cost of /CREMENT operation. Suppose that
theith INCREMENT operation reset§ bits. The actual cost of the operation is
therefore at modt + 1, since in addition to resettirg bits, it sets at most one bit
to 1. If bj = O, then thath operation resets al bits, and sdyj_; =t = k. If
by > 0, thenby = bj_1 —tj + 1. In either casdy < b_; —tj + 1, and the potential
difference is

®(Dj) —P(Dip) < M1 —t+1D) —b_y
= 1-—4.

The amortized cost is therefore

~

G = G+ d(D)—d(Di-1)
< (ti +1)+(1—ti)
= 2.

If the counter starts at zero, th@(Dgy) = 0. Sinced(D;) > 0 for all i, the total
amortized cost of a sequencerofNCREMENT operations is an upper bound on the
total actual cost, and so the worst-case cost MiCREMENT operations iSO (n).

The potential method gives us an easy way to analyze the @oewen when it
does not start at zero. There are initidhlyl's, and aften INCREMENT operations
there areb, 1's, where 0< bg, b, < k. (Recall thak is the number of bits in the
counter.) We can rewrite equation (17.3) as

> G =) ¢ —o(Dy)+ (Do) . (17.4)
i=1 i=1

We haveC, < 2forall1 <i < n. Sinced®(Dg) = by and®(D,) = b,, the total
actual cost ofi INCREMENT operations is

n
>

IA

n
> 2 - by + by
i=1
= 2n_bn+b0.

Note in particular that sincby < k, as long ak = O(n), the total actual cost

is O(n). In other words, if we execute at least= 2 (k) INCREMENT operations,
the total actual cost i©(n), no matter what initial value the counter contains.

Exercises

17.3-1

Suppose we have a potential functidnsuch thatd (D;) > ®(Dg) for all i, but
®(Dg) # 0. Show that there exists a potential functibhsuch thatd’(Dg) = 0,
®'(Dj) > Oforalli > 1, and the amortized costs usidg are the same as the
amortized costs using.

416

Chapter 17 Amortized Analysis

17.3-2
Redo Exercise 17.1-3 using a potential method of analysis.

17.3-3

Consider an ordinary binary min-heap data structure wighements that supports
the instructions NSERT and EXTRACT-MIN in O(lgn) worst-case time. Give a
potential function® such that the amortized cost afi$erTis O(lgn) and the
amortized cost of ETRACT-MIN is O(1), and show that it works.

17.3-4
What is the total cost of executingof the stack operationsuzH, Pop, and MUL-
TIPOP, assuming that the stack begins wahobjects and finishes with, objects?

17.3-5

Suppose that a counter begins at a number Wwitlis in its binary representa-
tion, rather than at 0. Show that the cost of performingdCREMENT operations
is O(n) if n = Q(b). (Do not assume thdtis constant.)

17.3-6
Show how to implement a queue with two ordinary stacks (Egert0.1-6) so that
the amortized cost of eaclN®UEUE and each BQUEUE operation isO(1).

17.3-7
Design a data structure to support the following two operegifor a se6 of inte-
gers:

INSERT(S, X) insertsx into setS.
DELETE-LARGER-HALF (S) deletes the largesiS/2] elements front.

Explain how to implement this data structure so that any secg ofm operations
runs inO(m) time.

17.4 Dynamic tables

In some applications, we do not know in advance how many tbjeitl be stored
in a table. We might allocate space for a table, only to find latdr that it is
not enough. The table must then be reallocated with a laigey and all objects
stored in the original table must be copied over into the temger table. Similarly,
if many objects have been deleted from the table, it may bé&wudnile to reallocate
the table with a smaller size. In this section, we study thidblem of dynamically
expanding and contracting a table. Using amortized arglya shall show that the

17.4 Dynamic tables 417

amortized cost of insertion and deletion is oflyl), even though the actual cost of
an operation is large when it triggers an expansion or a actidn. Moreover, we
shall see how to guarantee that the unused space in a dyrablemever exceeds
a constant fraction of the total space.

We assume that the dynamic table supports the operati®BSEFINSERT and
TABLE-DELETE. TABLE-INSERT inserts into the table an item that occupies a
singleslot, that is, a space for one item. LikewiseyBLE-DELETE can be thought
of as removing an item from the table, thereby freeing a sldte details of the
data-structuring method used to organize the table areporiamt; we might use
a stack (Section 10.1), a heap (Chapter 6), or a hash tabsp{€till). We might
also use an array or collection of arrays to implement olgtmrage, as we did in
Section 10.3.

We shall find it convenient to use a concept introduced in aahais of hashing
(Chapter 11). We define tHead factor «(T) of a nonempty tabld to be the
number of items stored in the table divided by the size (nunalbeslots) of the
table. We assign an empty table (one with no items) size Oywandefine its load
factor to be 1. If the load factor of a dynamic table is boundeldw by a constant,
the unused space in the table is never more than a constatioifraf the total
amount of space.

We start by analyzing a dynamic table in which only insesiane performed.
We then consider the more general case in which both insertiad deletions are
allowed.

17.4.1 Table expansion

Let us assume that storage for a table is allocated as an afriglgts. A table
fills up when all slots have been used or, equivalently, wieload factor is . In
some software environments, if an attempt is made to ineérmn into a full table,
there is no alternative but to abort with an error. We shalliase, however, that our
software environment, like many modern ones, provides a engimanagement
system that can allocate and free blocks of storage on rediiess, when an item
is inserted into a full table, we caxpandthe table by allocating a new table with
more slots than the old table had. Because we always needlileetd reside in
contiguous memory, we must allocate a new array for the taadpte and then copy
items from the old table into the new table.

A common heuristic is to allocate a new table that has twiceasy slots as
the old one. If only insertions are performed, the load faofa table is always at

1in some situations, such as an open-address hash table,yweishato consider a table to be full if
its load factor equals some constant strictly less thande ercise 17.4-1.)

418

Chapter 17 Amortized Analysis

least %2, and thus the amount of wasted space never exceeds habtdhsgace
in the table.

In the following pseudocode, we assume thats an object representing the
table. The fieldtablg T] contains a pointer to the block of storage representing
the table. The fieldhuniT] contains the number of items in the table, and the
field sizd T] is the total number of slots in the table. Initially, the lals empty:
nuniT] = sizdT] = 0.

TABLE-INSERT(T, X)
1 ifsizdT] =0
then allocatetable T] with 1 slot
sizdT] < 1
if numT] = sizdT]
then allocatenewtable with 2 - sizd T] slots
insert all items irtablg T] into newtable
freetabld T]
tabld T] < newtable
9 sizdT] < 2-sizdT]
10 insertx into tablgT]
11 nunT] < nun(T]+1

A WN

5
6
7
8

Notice that we have two “insertion” procedures here: th&E-INSERT proce-
dure itself and theslementary insertioninto a table in lines 6 and 10. We can
analyze the running time ofABLE-INSERT in terms of the number of elementary
insertions by assigning a cost of 1 to each elementary ingert\Ve assume that
the actual running time of ABLE-INSERT s linear in the time to insert individual
items, so that the overhead for allocating an initial tabléine 2 is constant and
the overhead for allocating and freeing storage in linestb/ais dominated by the
cost of transferring items in line 6. We call the event in whibethen clause in
lines 5-9 is executed axpansion

Let us analyze a sequenceroTABLE-INSERT operations on an initially empty
table. What is the cogt; of theith operation? If there is room in the current
table (or if this is the first operation), then= 1, since we need only perform the
one elementary insertion in line 10. If the current tableui, fhowever, and an
expansion occurs, them = i: the cost is 1 for the elementary insertion in line 10
plusi — 1 for the items that must be copied from the old table to the table in
line 6. If n operations are performed, the worst-case cost of an opernatO(n),
which leads to an upper bound 6f(n?) on the total running time fan operations.

This bound is not tight, because the cost of expanding the imbot borne often
in the course oh TABLE-INSERT operations. Specifically, théh operation causes
an expansion only when— 1 is an exact power of 2. The amortized cost of an

17.4 Dynamic tables 419

operation is in factO(1), as we can show using aggregate analysis. The cost of
theith operation is

o — I if i —1isan exact power of 2
' 7 |1 otherwise

The total cost oh TABLE-INSERT operations is therefore

n Llgn] _

Yo < ntdH 2

i=1 j=0
< n+2n

since there are at mostoperations that cost 1 and the costs of the remaining oper-
ations form a geometric series. Since the total cost DABLE-INSERT operations
is 3n, the amortized cost of a single operation is 3.

By using the accounting method, we can gain some feeling for te amor-
tized cost of a ABLE-INSERT operation should be 3. Intuitively, each item pays
for 3 elementary insertions: inserting itself in the cutr@le, moving itself when
the table is expanded, and moving another item that hasdglteeen moved once
when the table is expanded. For example, suppose that thefsthe table isn
immediately after an expansion. Then, the number of iterttsdniable ian/2, and
the table contains no credit. We charge 3 dollars for eadrtios. The elementary
insertion that occurs immediately costs 1 dollar. Anothatad is placed as credit
on the item inserted. The third dollar is placed as credit @ of them/2 items
already in the table. Filling the table requineg2 — 1 additional insertions, and
thus, by the time the table containsitems and is full, each item has a dollar to
pay for its reinsertion during the expansion.

The potential method can also be used to analyze a sequentelmBLE-
INSERT operations, and we shall use it in Section 17.4.2 to desigmeLH-
DELETE operation that ha®(1) amortized cost as well. We start by defining a
potential functiond that is 0 immediately after an expansion but builds to théetab
size by the time the table is full, so that the next expansambe paid for by the
potential. The function

®(T)=2-nunT] — sizdT] (17.5)

is one possibility. Immediately after an expansion, we hawe[T] = sizdT]/2,

and thus®(T) = 0, as desired. Immediately before an expansion, we have
nuniT] = sizdT], and thus®(T) = nun{T], as desired. The initial value of the
potential is 0, and since the table is always at least hdlffiun{T] > sizdT]/2,
which implies that®(T) is always nonnegative. Thus, the sum of the amortized
costs ofn TABLE-INSERT operations is an upper bound on the sum of the actual
costs.

420

Chapter 17 Amortized Analysis

To analyze the amortized cost of tith TABLE-INSERT operation, we lehum
denote the number of items stored in the table aftertth@perationsize denote
the total size of the table after thth operation, and; denote the potential after
theith operation. Initially, we havauny = 0, sizgy = 0, and®y = 0.

If theith TABLE-INSERT operation does not trigger an expansion, then we have
size = size_; and the amortized cost of the operation is

o~

G = CG+d —D_

= 14+ (2-num —size) — (2-num_, —Size_q)
1+ (2-num —sizg) — (2(num —1) — sizg)
3.

If the ith operation does trigger an expansion, then we @& = 2 - size_; and
Size_; = num_; = num —1, which implies thasize = 2- (num —1). Thus, the
amortized cost of the operation is

o~

G = G+ —Pi
= num +(2-num —sizg) — (2- num_, — size_1)
= num+(2-num —2- (num —1)) — (2(num —1) — (num —1))
= num +2 — (num —1)
3.

Figure 17.3 plots the values ntim, sizg, and®; againsti. Notice how the poten-
tial builds to pay for the expansion of the table.

17.4.2 Table expansion and contraction

Toimplement a ABLE-DELETE operation, it is simple enough to remove the spec-
ified item from the table. It is often desirable, howevercomtractthe table when
the load factor of the table becomes too small, so that théedapace is not ex-
orbitant. Table contraction is analogous to table expansichen the number of
items in the table drops too low, we allocate a new, smalldetand then copy the
items from the old table into the new one. The storage for iti¢adle can then be
freed by returning it to the memory-management systemlliides would like to
preserve two properties:

+ the load factor of the dynamic table is bounded below by ateohsand
+ the amortized cost of a table operation is bounded above bygtant.

We assume that cost can be measured in terms of elementartidns and dele-
tions.

A natural strategy for expansion and contraction is to detité table size when
an item is inserted into a full table and halve the size whealetidn would cause

17.4 Dynamic tables 421

32
siz nu
24 § : m
16
@
8
4 v
0 i
0 8 16 24 32

Figure 17.3 The effect of a sequence pfTABLE-INSERTOperations on the numbaum of items

in the table, the numbesizg of slots in the table, and the potentisj = 2-num — size, each being
measured after theh operation. The thin line showsim, the dashed line shoveizg, and the thick
line shows®;. Notice that immediately before an expansion, the potendia built up to the number
of items in the table, and therefore it can pay for movingla items to the new table. Afterwards,
the potential drops to 0, but it is immediately increased lgh2n the item that caused the expansion
is inserted.

the table to become less than half full. This strategy gueemnthat the load factor
of the table never drops below 4, but unfortunately, it can cause the amortized
cost of an operation to be quite large. Consider the follgnsnenario. We per-
form n operations on a tabl&, wheren is an exact power of 2. The first/2
operations are insertions, which by our previous analysss & total of® (n). At
the end of this sequence of insertiomey[T] = sizdT] = n/2. For the sec-
ondn/2 operations, we perform the following sequence:

,D,D,ILI,D,D, I, 1, ...,

where | stands for an insertion and D stands for a deletiom.fif$t insertion causes
an expansion of the table to sizeThe two following deletions cause a contraction
of the table back to size/2. Two further insertions cause another expansion, and
so forth. The cost of each expansion and contractidgh (is), and there ar@® (n)
of them. Thus, the total cost of theoperations i$9 (n?), and the amortized cost
of an operation i® (n).

The difficulty with this strategy is obvious: after an expans we do not per-
form enough deletions to pay for a contraction. Likewis¢égraé contraction, we
do not perform enough insertions to pay for an expansion.

422

Chapter 17 Amortized Analysis

We can improve upon this strategy by allowing the load fadfothe table to
drop below 2. Specifically, we continue to double the table size whentem i
is inserted into a full table, but we halve the table size waeleletion causes the
table to become less thapidLfull, rather than 12 full as before. The load factor of
the table is therefore bounded below by the const#@dt The idea is that after an
expansion, the load factor of the table j21 Thus, half the items in the table must
be deleted before a contraction can occur, since contradbes not occur unless
the load factor would fall below /4. Likewise, after a contraction, the load factor
of the table is also /2. Thus, the number of items in the table must be doubled
by insertions before an expansion can occur, since expaositurs only when the
load factor would exceed 1.

We omit the code for ABLE-DELETE, since it is analogous toOABLE-INSERT.

It is convenient to assume for analysis, however, that ifnilvaber of items in the
table drops to 0, the storage for the table is freed. Thaf isuiT] = O, then
sizdT] = 0.

We can now use the potential method to analyze the cost of @eseq ofn
TABLE-INSERT and TABLE-DELETE operations. We start by defining a potential
function ® that is 0 immediately after an expansion or contraction auitii® as
the load factor increases to 1 or decreases/th 1Let us denote the load factor
of a nonempty tabld by «(T) = nuniT]/sizdT]. Since for an empty table,
nuniT] = sizdT] = 0 ande[T] = 1, we always havauniT] = «(T) - sizdT],
whether the table is empty or not. We shall use as our potdutiation

O(T) — 2-numT] —sizdT] if «(T)>1/2,
(1) = \sizdT]/2 — nun{T] i «(T) < 1/2.

Observe that the potential of an empty table is 0 and that tkenpal is never
negative. Thus, the total amortized cost of a sequence ohtipes with respect
to @ is an upper bound on the actual cost of the sequence.

Before proceeding with a precise analysis, we pause to wbhsEme proper-
ties of the potential function. Notice that when the loaddads 1/2, the poten-
tial is 0. When the load factor is 1, we haszdT] = nuniT], which implies
®(T) = nunT], and thus the potential can pay for an expansion if an iteim-is
serted. When the load factor ig4l, we havesiz§ T] = 4 - nuniT], which implies
®(T) = nunT], and thus the potential can pay for a contraction if an item i
deleted. Figure 17.4 illustrates how the potential beh&mea sequence of opera-
tions.

To analyze a sequence Df TABLE-INSERT and TABLE-DELETE operations,
we letc; denote the actual cost of thh operationC denote its amortized cost
with respect tob, num denote the number of items stored in the table aftertthe
operation,size denote the total size of the table after tlie operationg; denote
the load factor of the table after tilh operation, and; denote the potential after
theith operation. Initiallynumy = 0, sizgy = 0, ag = 1, and®q = 0.

(17.6)

17.4 Dynamic tables 423

32

24 i
size|i

16 aum

A e AN
' |’

V /

0 8 16 2

32 40 48

Figure 17.4 The effect of a sequence nfTABLE-INSERTand TABLE-DELETEOperations on the
numbemum of items in the table, the numbesize of slots in the table, and the potential

& — 2-num —sizg ifoj >1/2,

'™ \sizg /2—num if o <1/2,
each being measured after ttie operation. The thin line showsim, the dashed line shovgize,
and the thick line show®; . Notice that immediately before an expansion, the potehésa built up
to the number of items in the table, and therefore it can paynfaving all the items to the new table.

Likewise, immediately before a contraction, the poterties built up to the number of items in the
table.

We start with the case in which tidh operation is ABLE-INSERT. The analysis
is identical to that for table expansion in Section 17.4.4;if; > 1/2. Whether
the table expands or not, the amortized a@sof the operation is at most 3. If
aj_1 < 1/2, the table cannot expand as a result of the operation, sikmansion
occurs only whemy;_1; = 1. If o < 1/2 as well, then the amortized cost of titib
operation is

o~

C = G+ —Pi

= 1+ (sizg /2—num) — (Sizg_1 /2 — num_y)
= 1+ (size /2—num) — (size /2 — (num —1))
= 0.

If ¢i_1 < 1/2 bute; > 1/2, then

424

Chapter 17 Amortized Analysis

G = CG+d —Dj_;
= 14+ (2-num —sizg) — (Size_1 /2 — num_,)
= 14+ Q2Mum_y+1) —size_1) — (Sizg_1 /2 — num_y)

3 .
= 3-num,1—55|ze,1+3
. 3 .
= 3ai_1$|ze_1—53|ze_1+3

3siz 3siz +3
5 €1 > €1

= 3.

Thus, the amortized cost of anBLE-INSERT operation is at most 3.

We now turn to the case in which thth operation is ABLE-DELETE. In this
case,num = num_; —1. If oj_; < 1/2, then we must consider whether the
operation causes a contraction. If it does not, tiega = size_; and the amortized
cost of the operation is

G = G+o —dig

= 1+ (sizg /2—num) — (Sizg_1 /2 — num_y)

= 1+ (size /2—num) — (sizg /2 — (num +1))

= 2.
If ¢i_1 < 1/2 and thdth operation does trigger a contraction, then the actual cos
of the operation i€; = num +1, since we delete one item and mowanm items.
We havesize /2 = size_; /4 = num_; = num +1, and the amortized cost of the
operation is
G = G+o —dig

= (num +1) + (sizg /2 — num) — (siz@_1 /2 — num_1)

= (hum +21) + (hum +1) — num) — ((2- num +2) — (num +1))

= 1.
When the th operation is a ABLE-DELETE andw;_; > 1/2, the amortized cost is
also bounded above by a constant. The analysis is left agiBael7.4-2.

In summary, since the amortized cost of each operation isded above by

a constant, the actual time for any sequencea operations on a dynamic table
is O(n).

Exercises

17.4-1
Suppose that we wish to implement a dynamic, open-addreds thhle. Why
might we consider the table to be full when its load factorches some value

Problems for Chapter 17 425

that is strictly less than 1? Describe briefly how to makeriise into a dynamic,
open-address hash table run in such a way that the expedtedofahe amortized
cost perinsertion i©(1). Why is the expected value of the actual cost per insertion
not necessarilyO (1) for all insertions?

17.4-2

Show that ifo;_1 > 1/2 and theith operation on a dynamic table isaBLE-
DELETE, then the amortized cost of the operation with respect topttential
function (17.6) is bounded above by a constant.

17.4-3

Suppose that instead of contracting a table by halving z&s wihen its load factor
drops below 14, we contract it by multiplying its size by/3 when its load factor
drops below 13. Using the potential function

®(T)=|2-nunT] — sizdT]| ,

show that the amortized cost of aHLE-DELETE that uses this strategy is bounded
above by a constant.

Problems

17-1 Bit-reversed binary counter
Chapter 30 examines an important algorithm called the Fagti€ Transform,
or FFT. The first step of the FFT algorithm performisiareversal permutatioron
an input arrayA[0 . . n — 1] whose length i = 2X for some nonnegative integler
This permutation swaps elements whose indices have biegngsentations that
are the reverse of each other.

We can express each indaxas ak-bit sequencday_1, ax_p, ..., &), where
a=Y\7a 2. We define

revk({ax—1, &-2, ..., o)) = (@, a1, . .., A&-1) ;

thus,
k-1 _
rev(@) = Y aci12 .
i=0

For example, ih = 16 (or, equivalentlyk = 4), then rey(3) = 12, since the 4-bit
representation of 3 is 0011, which when reversed gives 1th@®-bit representa-
tion of 12.

426

Chapter 17 Amortized Analysis

a. Given a function reythat runs in® (k) time, write an algorithm to perform the
bit-reversal permutation on an array of lengtk= 2¢ in O(nk) time.

We can use an algorithm based on an amortized analysis t@waphe running
time of the bit-reversal permutation. We maintain a “biteesed counter” and a
procedure Br-REVERSED INCREMENT that, when given a bit-reversed-counter
valuea, produces reMrew(a) + 1). If k = 4, for example, and the bit-reversed
counter starts at 0, then successive calls toBEVERSED- INCREMENT produce
the sequence

000Q 100Q 0100 1100 00101010 ...=0,8,4,12 2,10,... .

b. Assume that the words in your computer stkqigit values and that in unit time,
your computer can manipulate the binary values with opamatsuch as shifting
left or right by arbitrary amounts, bitwise-AND, bitwiseRD etc. Describe
an implementation of the B-REVERSED-INCREMENT procedure that allows
the bit-reversal permutation on amelement array to be performed in a total
of O(n) time.

c. Suppose that you can shift a word left or right by only onerbitinit time. Is it
still possible to implement a@®(n)-time bit-reversal permutation?

17-2 Making binary search dynamic

Binary search of a sorted array takes logarithmic search, thmt the time to insert
a new element is linear in the size of the array. We can imptheetime for
insertion by keeping several sorted arrays.

Specifically, suppose that we wish to suppoBABCH and INSERT on a set
of n elements. Lek = [lg(n + 1)], and let the binary representation mfbe
(Nk_1, Nk_2, ..., Ng). We havek sorted arrayshg, As, ..., Ac_1, Where fori =
0,1,...,k — 1, the length of arrayh is 2. Each array is either full or empty,
depending on whether = 1 orn; = 0, respectively. The total number of elements
held in allk arrays is thereforiik;ol ni 2 = n. Although each individual array is
sorted, there is no particular relationship between elésniardifferent arrays.

a. Describe how to perform theE3RCH operation for this data structure. Analyze
its worst-case running time.

b. Describe how to insert a new element into this data structmalyze its worst-
case and amortized running times.

c. Discuss how to implement ELETE.

Problems for Chapter 17 427

17-3 Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by addiegch nodex the
field sizgx] giving the number of keys stored in the subtree rootex| aeto be a
constant in the range/2 < o < 1. We say that a given nodeis a-balancedif

sizgleft[x]] < o« - sizdx]
and
sizgright[x]] < « - siz¢X] .

The tree as a whole ig-balancedif every node in the tree is-balanced. The
following amortized approach to maintaining weight-bakeah trees was suggested
by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. &iaiex in
an arbitrary binary search tree, show how to rebuild thereehtooted ak so
that it becomes /2-balanced. Your algorithm should run in ting(sizdx]),
and it can usé(sizd x]) auxiliary storage.

b. Show that performing a search in aAnode «-balanced binary search tree
takesO(Ig n) worst-case time.

For the remainder of this problem, assume that the constasitstrictly greater
than /2. Suppose thaiNSERT and DELETE are implemented as usual for an
node binary search tree, except that after every such oper#tany node in the
tree is no longew-balanced, then the subtree rooted at the highest such mdige i
tree is “rebuilt” so that it becomes/2-balanced.

We shall analyze this rebuilding scheme using the potemtthod. For a node
in a binary search tre€, we define

A(X) = |sizdleft[x]] — sizdright[x]]]| ,
and we define the potential df as

o(T)=c Y AX),
XeT:A(X)>2

wherec is a sufficiently large constant that dependsxon

c. Argue that any binary search tree has nonnegative potentidlthat a 12-
balanced tree has potential 0.

d. Suppose thain units of potential can pay for rebuilding an-node subtree.
How large must be in terms ofx in order for it to takeO(1) amortized time
to rebuild a subtree that is netbalanced?

e. Show that inserting a node into or deleting a node fronm-anode«-balanced
tree costO(lg n) amortized time.

428

Chapter 17 Amortized Analysis

17-4 The cost of restructuring red-black trees

There are four basic operations on red-black trees thabipestructural modi-
fications node insertions, node deletions, rotations, and colorifications. We
have seen that RBNISERT and RB-LCELETE use onlyO(1) rotations, node inser-
tions, and node deletions to maintain the red-black praserbut they may make
many more color modifications.

a. Describe a legal red-black tree withnodes such that calling RBYEERT to
add the(n + 1)st node cause& (Ign) color modifications. Then describe a
legal red-black tree with nodes for which calling RB-BLETE on a particular
node causef (Ig n) color modifications.

Although the worst-case number of color modifications pesrapon can be log-
arithmic, we shall prove that any sequencenoRB-INSERT and RB-LCELETE
operations on an initially empty red-black tree cau€gs) structural modifica-
tions in the worst case.

b. Some of the cases handled by the main loop of the code of bothNRBRT
Fixup and RB-LCELETE-FIXUP areterminating. once encountered, they cause
the loop to terminate after a constant number of additiopatations. For each
of the cases of RBNSERTFIXupP and RB-DELETE-FIxuP, specify which are
terminating and which are notH{nt: Look at Figures 13.5, 13.6, and 13.7.)

We shall first analyze the structural modifications when dngertions are per-
formed. LetT be ared-black tree, and defidgT) to be the number of red nodes
in T. Assume that 1 unit of potential can pay for the structuratiifications per-
formed by any of the three cases of RBSERFFIXuP.

c. LetT’ be the result of applying Case 1 of RBHERTFIXUP to T. Argue that
O(T) =d(T) — 1.

d. Node insertion into a red-black tree using RBsERTcan be broken down into
three parts. List the structural modifications and potémtieanges resulting
from lines 1-16 of RB4NSERT, from nonterminating cases of RB$ERT
Fixup, and from terminating cases of RBISERFFIXUP.

e. Using part (d), argue that the amortized number of struttoaalifications per-
formed by any call of RBNISERTis O(1).

We now wish to prove that there aé®m) structural modifications when there are
both insertions and deletions. Let us define, for each xode

0 ifxisred,

if X is black and has no red children
if x is black and has one red child

if x is black and has two red children

w(X) =

N OB

Notes for Chapter 17 429

Now we redefine the potential of a red-black tieas

O(T) =Y w(Xx),
xeT

and letT’ be the tree that results from applying any nonterminatirgg ¢ RB-
INSERFFIXUP or RB-DELETE-FIXuP to T.

f. Show that®(T’) < ®(T) — 1 for all nonterminating cases of RB‘¢$ERT
Fixup. Argue that the amortized number of structural modificatiparformed
by any call of RB-NSERFFIXUP is O(1).

g. Show that®(T’) < ®(T) — 1 for all nonterminating cases of RBHDETE-
Fixup. Argue that the amortized number of structural modificatiparformed
by any call of RB-DELETE-FIXuP is O(1).

h. Complete the proof that in the worst case, any sequenoeRB-INSERT and
RB-DELETE operations perform®(m) structural modifications.

Chapter notes

Aggregate analysis was used by Aho, Hopcroft, and Ullman [Edrjan [293]
surveys the accounting and potential methods of amortinet/sis and presents
several applications. He attributes the accounting metbakveral authors, in-
cluding M. R. Brown, R. E. Tarjan, S. Huddleston, and K. Meinth He attributes
the potential method to D. D. Sleator. The term “amortizedduie to D. D. Sleator
and R. E. Tarjan.

Potential functions are also useful for proving lower baifat certain types of
problems. For each configuration of the problem, we definetangial function
that maps the configuration to a real number. Then we deterthnpotentiafbiy
of the initial configuration, the potentiabsn, of the final configuration, and the
maximum change in potentidl ®,,x due to any step. The number of steps must
therefore be at leastbsing — Qinitl / |APmaxl. Examples of the use of potential
functions for proving lower bounds in I/O complexity app@aworks by Cormen
[71], Floyd [91], and Aggarwal and Vitter [4]. Krumme, Cylern and Venkatara-
man [194] applied potential functions to prove lower boundgjossiping com-
municating a unique item from each vertex in a graph to evtrgrosertex.

