
17 Amortized Analysis

In anamortized analysis, the time required to perform a sequence of data-structure
operations is averaged over all the operations performed. Amortized analysis can
be used to show that the average cost of an operation is small,if one averages over
a sequence of operations, even though a single operation within the sequence might
be expensive. Amortized analysis differs from average-case analysis in that prob-
ability is not involved; an amortized analysis guarantees theaverage performance
of each operation in the worst case.

The first three sections of this chapter cover the three most common techniques
used in amortized analysis. Section 17.1 starts with aggregate analysis, in which
we determine an upper boundT(n) on the total cost of a sequence ofn operations.
The average cost per operation is thenT(n)/n. We take the average cost as the
amortized cost of each operation, so that all operations have the same amortized
cost.

Section 17.2 covers the accounting method, in which we determine an amortized
cost of each operation. When there is more than one type of operation, each type of
operation may have a different amortized cost. The accounting method overcharges
some operations early in the sequence, storing the overcharge as “prepaid credit”
on specific objects in the data structure. The credit is used later in the sequence to
pay for operations that are charged less than they actually cost.

Section 17.3 discusses the potential method, which is like the accounting method
in that we determine the amortized cost of each operation andmay overcharge op-
erations early on to compensate for undercharges later. Thepotential method main-
tains the credit as the “potential energy” of the data structure as a whole instead of
associating the credit with individual objects within the data structure.

We shall use two examples to examine these three methods. Oneis a stack
with the additional operation MULTIPOP, which pops several objects at once. The
other is a binary counter that counts up from 0 by means of the single operation
INCREMENT.

While reading this chapter, bear in mind that the charges assigned during an
amortized analysis are for analysis purposes only. They need not and should not

406 Chapter 17 Amortized Analysis

appear in the code. If, for example, a credit is assigned to anobjectx when using
the accounting method, there is no need to assign an appropriate amount to some
attributecredit[x] in the code.

The insight into a particular data structure gained by performing an amortized
analysis can help in optimizing the design. In Section 17.4,for example, we shall
use the potential method to analyze a dynamically expandingand contracting table.

17.1 Aggregate analysis

In aggregate analysis, we show that for alln, a sequence ofn operations takes
worst-casetime T(n) in total. In the worst case, the average cost, oramortized
cost, per operation is thereforeT(n)/n. Note that this amortized cost applies to
each operation, even when there are several types of operations in the sequence.
The other two methods we shall study in this chapter, the accounting method and
the potential method, may assign different amortized coststo different types of
operations.

Stack operations

In our first example of aggregate analysis, we analyze stacksthat have been aug-
mented with a new operation. Section 10.1 presented the two fundamental stack
operations, each of which takesO(1) time:

PUSH(S, x) pushes objectx onto stackS.

POP(S) pops the top of stackSand returns the popped object.

Since each of these operations runs inO(1) time, let us consider the cost of each
to be 1. The total cost of a sequence ofn PUSH and POP operations is thereforen,
and the actual running time forn operations is therefore2(n).

Now we add the stack operation MULTIPOP(S, k), which removes thek top
objects of stackS, or pops the entire stack if it contains fewer thank objects. In
the following pseudocode, the operation STACK-EMPTY returnsTRUE if there are
no objects currently on the stack, andFALSE otherwise.

MULTIPOP(S, k)

1 while not STACK-EMPTY(S) andk 6= 0
2 do POP(S)

3 k← k− 1

Figure 17.1 shows an example of MULTIPOP.

17.1 Aggregate analysis 407

23
17
6

39
10
47

(a)

top

10
47

(b)

top

(c)

Figure 17.1 The action of MULTIPOP on a stackS, shown initially in (a). The top 4 objects are
popped by MULTIPOP(S,4), whose result is shown in(b). The next operation is MULTIPOP(S, 7),
which empties the stack—shown in(c)—since there were fewer than 7 objects remaining.

What is the running time of MULTIPOP(S, k) on a stack ofs objects? The actual
running time is linear in the number of POP operations actually executed, and thus
it suffices to analyze MULTIPOP in terms of the abstract costs of 1 each for PUSH

and POP. The number of iterations of thewhile loop is the number min(s, k) of
objects popped off the stack. For each iteration of the loop,one call is made to POP

in line 2. Thus, the total cost of MULTIPOP is min(s, k), and the actual running time
is a linear function of this cost.

Let us analyze a sequence ofn PUSH, POP, and MULTIPOP operations on an ini-
tially empty stack. The worst-case cost of a MULTIPOP operation in the sequence
is O(n), since the stack size is at mostn. The worst-case time of any stack opera-
tion is thereforeO(n), and hence a sequence ofn operations costsO(n2), since we
may haveO(n) MULTIPOP operations costingO(n) each. Although this analysis
is correct, theO(n2) result, obtained by considering the worst-case cost of each
operation individually, is not tight.

Using aggregate analysis, we can obtain a better upper boundthat considers the
entire sequence ofn operations. In fact, although a single MULTIPOP operation
can be expensive, any sequence ofn PUSH, POP, and MULTIPOP operations on
an initially empty stack can cost at mostO(n). Why? Each object can be popped
at most once for each time it is pushed. Therefore, the numberof times that POP

can be called on a nonempty stack, including calls within MULTIPOP, is at most
the number of PUSH operations, which is at mostn. For any value ofn, any
sequence ofn PUSH, POP, and MULTIPOP operations takes a total ofO(n) time.
The average cost of an operation isO(n)/n = O(1). In aggregate analysis, we
assign the amortized cost of each operation to be the averagecost. In this example,
therefore, all three stack operations have an amortized cost of O(1).

We emphasize again that although we have just shown that the average cost, and
hence running time, of a stack operation isO(1), no probabilistic reasoning was
involved. We actually showed aworst-casebound of O(n) on a sequence ofn

408 Chapter 17 Amortized Analysis

operations. Dividing this total cost byn yielded the average cost per operation, or
the amortized cost.

Incrementing a binary counter

As another example of aggregate analysis, consider the problem of implementing
ak-bit binary counter that counts upward from 0. We use an arrayA[0 . . k− 1] of
bits, wherelength[A] = k, as the counter. A binary numberx that is stored in the
counter has its lowest-order bit inA[0] and its highest-order bit inA[k−1], so that
x =

∑k−1
i=0 A[i] · 2i . Initially, x = 0, and thusA[i] = 0 for i = 0, 1, . . . , k− 1. To

add 1 (modulo 2k) to the value in the counter, we use the following procedure.

INCREMENT(A)

1 i ← 0
2 while i < length[A] and A[i] = 1
3 do A[i] ← 0
4 i ← i + 1
5 if i < length[A]
6 then A[i] ← 1

Figure 17.2 shows what happens to a binary counter as it is incremented 16 times,
starting with the initial value 0 and ending with the value 16. At the start of
each iteration of thewhile loop in lines 2–4, we wish to add a 1 into positioni .
If A[i] = 1, then adding 1 flips the bit to 0 in positioni and yields a carry of 1,
to be added into positioni + 1 on the next iteration of the loop. Otherwise, the
loop ends, and then, ifi < k, we know thatA[i] = 0, so that adding a 1 into posi-
tion i , flipping the 0 to a 1, is taken care of in line 6. The cost of eachINCREMENT

operation is linear in the number of bits flipped.
As with the stack example, a cursory analysis yields a bound that is correct but

not tight. A single execution of INCREMENT takes time2(k) in the worst case, in
which arrayA contains all 1’s. Thus, a sequence ofn INCREMENT operations on
an initially zero counter takes timeO(nk) in the worst case.

We can tighten our analysis to yield a worst-case cost ofO(n) for a sequence
of n INCREMENT’s by observing that not all bits flip each time INCREMENT is
called. As Figure 17.2 shows,A[0] does flip each time INCREMENT is called.
The next-highest-order bit,A[1], flips only every other time: a sequence ofn IN-
CREMENT operations on an initially zero counter causesA[1] to flip ⌊n/2⌋ times.
Similarly, bit A[2] flips only every fourth time, or⌊n/4⌋ times in a sequence ofn
INCREMENT’s. In general, fori = 0, 1, . . . , ⌊lg n⌋, bit A[i] flips ⌊n/2i ⌋ times in a
sequence ofn INCREMENT operations on an initially zero counter. Fori > ⌊lg n⌋,

17.1 Aggregate analysis 409

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 11
0 0 0 0 0 0 1 02
0 0 0 0 0 0 1 13
0 0 0 0 0 1 0 04
0 0 0 0 0 1 0 15
0 0 0 0 0 1 1 06
0 0 0 0 0 1 1 17
0 0 0 0 1 0 0 08
0 0 0 0 1 0 0 19
0 0 0 0 1 0 1 010
0 0 0 0 1 0 1 111
0 0 0 0 1 1 0 012
0 0 0 0 1 1 0 113
0 0 0 0 1 1 1 014
0 0 0 0 1 1 1 115
0 0 0 1 0 0 0 016

A[0
]

A[1
]

A[2
]

A[3
]

A[4
]

A[5
]

A[6
]

A[7
]Counter

value
Total
cost

1
3
4
7
8

10
11
15
16
18
19
22
23
25
26
31

0

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT

operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is never more than twice the total number of INCREMENT

operations.

bit A[i] never flips at all. The total number of flips in the sequence isthus

⌊lg n⌋∑

i=0

⌊ n

2i

⌋
< n

∞∑

i=0

1

2i

= 2n ,

by equation (A.6). The worst-case time for a sequence ofn INCREMENT operations
on an initially zero counter is thereforeO(n). The average cost of each operation,
and therefore the amortized cost per operation, isO(n)/n = O(1).

Exercises

17.1-1
If the set of stack operations included a MULTIPUSH operation, which pushesk
items onto the stack, would theO(1) bound on the amortized cost of stack opera-
tions continue to hold?

17.1-2
Show that if a DECREMENT operation were included in thek-bit counter example,
n operations could cost as much as2(nk) time.

410 Chapter 17 Amortized Analysis

17.1-3
A sequence ofn operations is performed on a data structure. Thei th operation
costsi if i is an exact power of 2, and 1 otherwise. Use aggregate analysis to
determine the amortized cost per operation.

17.2 The accounting method

In the accounting methodof amortized analysis, we assign differing charges to
different operations, with some operations charged more orless than they actually
cost. The amount we charge an operation is called itsamortized cost. When an
operation’s amortized cost exceeds its actual cost, the difference is assigned to
specific objects in the data structure ascredit. Credit can be used later on to help
pay for operations whose amortized cost is less than their actual cost. Thus, one
can view the amortized cost of an operation as being split between its actual cost
and credit that is either deposited or used up. This method isvery different from
aggregate analysis, in which all operations have the same amortized cost.

One must choose the amortized costs of operations carefully. If we want analysis
with amortized costs to show that in the worst case the average cost per operation
is small, the total amortized cost of a sequence of operations must be an upper
bound on the total actual cost of the sequence. Moreover, as in aggregate analysis,
this relationship must hold for all sequences of operations. If we denote the actual
cost of thei th operation byci and the amortized cost of thei th operation bŷci , we
require

n∑

i=1

ĉi ≥
n∑

i=1

ci (17.1)

for all sequences ofn operations. The total credit stored in the data structure isthe
difference between the total amortized cost and the total actual cost, or

∑n
i=1 ĉi −∑n

i=1 ci . By inequality (17.1), the total credit associated with thedata structure
must be nonnegative at all times. If the total credit were ever allowed to become
negative (the result of undercharging early operations with the promise of repaying
the account later on), then the total amortized costs incurred at that time would be
below the total actual costs incurred; for the sequence of operations up to that time,
the total amortized cost would not be an upper bound on the total actual cost. Thus,
we must take care that the total credit in the data structure never becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis,let us return to the stack
example. Recall that the actual costs of the operations were

17.2 The accounting method 411

PUSH 1 ,
POP 1 ,
MULTIPOP min(k, s) ,

wherek is the argument supplied to MULTIPOP ands is the stack size when it is
called. Let us assign the following amortized costs:

PUSH 2 ,
POP 0 ,
MULTIPOP 0 .

Note that the amortized cost of MULTIPOP is a constant (0), whereas the actual
cost is variable. Here, all three amortized costs areO(1), although in general the
amortized costs of the operations under consideration may differ asymptotically.

We shall now show that we can pay for any sequence of stack operations by
charging the amortized costs. Suppose we use a dollar bill torepresent each unit
of cost. We start with an empty stack. Recall the analogy of Section 10.1 between
the stack data structure and a stack of plates in a cafeteria.When we push a plate
on the stack, we use 1 dollar to pay the actual cost of the push and are left with a
credit of 1 dollar (out of the 2 dollars charged), which we puton top of the plate.
At any point in time, every plate on the stack has a dollar of credit on it.

The dollar stored on the plate is prepayment for the cost of popping it from the
stack. When we execute a POP operation, we charge the operation nothing and pay
its actual cost using the credit stored in the stack. To pop a plate, we take the dollar
of credit off the plate and use it to pay the actual cost of the operation. Thus, by
charging the PUSH operation a little bit more, we needn’t charge the POPoperation
anything.

Moreover, we needn’t charge MULTIPOP operations anything either. To pop the
first plate, we take the dollar of credit off the plate and use it to pay the actual cost of
a POPoperation. To pop a second plate, we again have a dollar of credit on the plate
to pay for the POP operation, and so on. Thus, we have always charged enough up
front to pay for MULTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always has a nonnegative number of
plates, we have ensured that the amount of credit is always nonnegative. Thus, for
anysequence ofn PUSH, POP, and MULTIPOP operations, the total amortized cost
is an upper bound on the total actual cost. Since the total amortized cost isO(n),
so is the total actual cost.

Incrementing a binary counter

As another illustration of the accounting method, we analyze the INCREMENT op-
eration on a binary counter that starts at zero. As we observed earlier, the running
time of this operation is proportional to the number of bits flipped, which we shall

412 Chapter 17 Amortized Analysis

use as our cost for this example. Let us once again use a dollarbill to represent
each unit of cost (the flipping of a bit in this example).

For the amortized analysis, let us charge an amortized cost of 2 dollars to set a
bit to 1. When a bit is set, we use 1 dollar (out of the 2 dollars charged) to pay
for the actual setting of the bit, and we place the other dollar on the bit as credit to
be used later when we flip the bit back to 0. At any point in time,every 1 in the
counter has a dollar of credit on it, and thus we needn’t charge anything to reset a
bit to 0; we just pay for the reset with the dollar bill on the bit.

The amortized cost of INCREMENTcan now be determined. The cost of resetting
the bits within thewhile loop is paid for by the dollars on the bits that are reset.
At most one bit is set, in line 6 of INCREMENT, and therefore the amortized cost
of an INCREMENT operation is at most 2 dollars. The number of 1’s in the counter
is never negative, and thus the amount of credit is always nonnegative. Thus, forn
INCREMENT operations, the total amortized cost isO(n), which bounds the total
actual cost.

Exercises

17.2-1
A sequence of stack operations is performed on a stack whose size never exceedsk.
After everyk operations, a copy of the entire stack is made for backup purposes.
Show that the cost ofn stack operations, including copying the stack, isO(n) by
assigning suitable amortized costs to the various stack operations.

17.2-2
Redo Exercise 17.1-3 using an accounting method of analysis.

17.2-3
Suppose we wish not only to increment a counter but also to reset it to zero (i.e.,
make all bits in it 0). Show how to implement a counter as an array of bits so
that any sequence ofn INCREMENT and RESET operations takes timeO(n) on an
initially zero counter. (Hint: Keep a pointer to the high-order 1.)

17.3 The potential method

Instead of representing prepaid work as credit stored with specific objects in the
data structure, thepotential methodof amortized analysis represents the prepaid
work as “potential energy,” or just “potential,” that can bereleased to pay for future
operations. The potential is associated with the data structure as a whole rather than
with specific objects within the data structure.

17.3 The potential method 413

The potential method works as follows. We start with an initial data structureD0

on which n operations are performed. For eachi = 1, 2, . . . , n, we let ci be
the actual cost of thei th operation andDi be the data structure that results after
applying thei th operation to data structureDi−1. A potential function 8 maps
each data structureDi to a real number8(Di), which is thepotential associated
with data structureDi . Theamortized cost̂ci of the i th operation with respect to
potential function8 is defined by

ĉi = ci +8(Di)−8(Di−1) . (17.2)

The amortized cost of each operation is therefore its actualcost plus the increase in
potential due to the operation. By equation (17.2), the total amortized cost of then
operations is

n∑

i=1

ĉi =
n∑

i=1

(ci +8(Di)−8(Di−1))

=
n∑

i=1

ci +8(Dn)−8(D0) . (17.3)

The second equality follows from equation (A.9), since the8(Di) terms telescope.
If we can define a potential function8 so that8(Dn) ≥ 8(D0), then the total

amortized cost
∑n

i=1 ĉi is an upper bound on the total actual cost
∑n

i=1 ci . In prac-
tice, we do not always know how many operations might be performed. Therefore,
if we require that8(Di) ≥ 8(D0) for all i , then we guarantee, as in the accounting
method, that we pay in advance. It is often convenient to define8(D0) to be 0 and
then to show that8(Di) ≥ 0 for all i . (See Exercise 17.3-1 for an easy way to
handle cases in which8(D0) 6= 0.)

Intuitively, if the potential difference8(Di) − 8(Di−1) of the i th operation is
positive, then the amortized costĉi represents an overcharge to thei th operation,
and the potential of the data structure increases. If the potential difference is neg-
ative, then the amortized cost represents an undercharge tothe i th operation, and
the actual cost of the operation is paid by the decrease in thepotential.

The amortized costs defined by equations (17.2) and (17.3) depend on the choice
of the potential function8. Different potential functions may yield different amor-
tized costs yet still be upper bounds on the actual costs. There are often trade-offs
that can be made in choosing a potential function; the best potential function to use
depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once again to the example of the stack
operations PUSH, POP, and MULTIPOP. We define the potential function8 on a
stack to be the number of objects in the stack. For the empty stack D0 with which

414 Chapter 17 Amortized Analysis

we start, we have8(D0) = 0. Since the number of objects in the stack is never
negative, the stackDi that results after thei th operation has nonnegative potential,
and thus

8(Di) ≥ 0

= 8(D0) .

The total amortized cost ofn operations with respect to8 therefore represents an
upper bound on the actual cost.

Let us now compute the amortized costs of the various stack operations. If thei th
operation on a stack containings objects is a PUSH operation, then the potential
difference is

8(Di)−8(Di−1) = (s+ 1)− s

= 1 .

By equation (17.2), the amortized cost of this PUSH operation is

ĉi = ci +8(Di)−8(Di−1)

= 1+ 1

= 2 .

Suppose that thei th operation on the stack is MULTIPOP(S, k) and thatk′ =
min(k, s) objects are popped off the stack. The actual cost of the operation is k′,
and the potential difference is

8(Di)−8(Di−1) = −k′ .

Thus, the amortized cost of the MULTIPOP operation is

ĉi = ci +8(Di)−8(Di−1)

= k′ − k′

= 0 .

Similarly, the amortized cost of an ordinary POP operation is 0.
The amortized cost of each of the three operations isO(1), and thus the total

amortized cost of a sequence ofn operations isO(n). Since we have already argued
that8(Di) ≥ 8(D0), the total amortized cost ofn operations is an upper bound
on the total actual cost. The worst-case cost ofn operations is thereforeO(n).

Incrementing a binary counter

As another example of the potential method, we again look at incrementing a binary
counter. This time, we define the potential of the counter after thei th INCREMENT

operation to bebi , the number of 1’s in the counter after thei th operation.

17.3 The potential method 415

Let us compute the amortized cost of an INCREMENT operation. Suppose that
the i th INCREMENT operation resetsti bits. The actual cost of the operation is
therefore at mostti + 1, since in addition to resettingti bits, it sets at most one bit
to 1. If bi = 0, then thei th operation resets allk bits, and sobi−1 = ti = k. If
bi > 0, thenbi = bi−1− ti + 1. In either case,bi ≤ bi−1− ti + 1, and the potential
difference is

8(Di)−8(Di−1) ≤ (bi−1 − ti + 1)− bi−1

= 1− ti .

The amortized cost is therefore

ĉi = ci +8(Di)−8(Di−1)

≤ (ti + 1)+ (1− ti)

= 2 .

If the counter starts at zero, then8(D0) = 0. Since8(Di) ≥ 0 for all i , the total
amortized cost of a sequence ofn INCREMENT operations is an upper bound on the
total actual cost, and so the worst-case cost ofn INCREMENT operations isO(n).

The potential method gives us an easy way to analyze the counter even when it
does not start at zero. There are initiallyb0 1’s, and aftern INCREMENT operations
there arebn 1’s, where 0≤ b0, bn ≤ k. (Recall thatk is the number of bits in the
counter.) We can rewrite equation (17.3) as

n∑

i=1

ci =
n∑

i=1

ĉi −8(Dn)+8(D0) . (17.4)

We havêci ≤ 2 for all 1≤ i ≤ n. Since8(D0) = b0 and8(Dn) = bn, the total
actual cost ofn INCREMENT operations is

n∑

i=1

ci ≤
n∑

i=1

2− bn + b0

= 2n− bn + b0 .

Note in particular that sinceb0 ≤ k, as long ask = O(n), the total actual cost
is O(n). In other words, if we execute at leastn = �(k) INCREMENT operations,
the total actual cost isO(n), no matter what initial value the counter contains.

Exercises

17.3-1
Suppose we have a potential function8 such that8(Di) ≥ 8(D0) for all i , but
8(D0) 6= 0. Show that there exists a potential function8′ such that8′(D0) = 0,
8′(Di) ≥ 0 for all i ≥ 1, and the amortized costs using8′ are the same as the
amortized costs using8.

416 Chapter 17 Amortized Analysis

17.3-2
Redo Exercise 17.1-3 using a potential method of analysis.

17.3-3
Consider an ordinary binary min-heap data structure withn elements that supports
the instructions INSERT and EXTRACT-M IN in O(lg n) worst-case time. Give a
potential function8 such that the amortized cost of INSERT is O(lg n) and the
amortized cost of EXTRACT-M IN is O(1), and show that it works.

17.3-4
What is the total cost of executingn of the stack operations PUSH, POP, and MUL-
TIPOP, assuming that the stack begins withs0 objects and finishes withsn objects?

17.3-5
Suppose that a counter begins at a number withb 1’s in its binary representa-
tion, rather than at 0. Show that the cost of performingn INCREMENT operations
is O(n) if n = �(b). (Do not assume thatb is constant.)

17.3-6
Show how to implement a queue with two ordinary stacks (Exercise 10.1-6) so that
the amortized cost of each ENQUEUE and each DEQUEUEoperation isO(1).

17.3-7
Design a data structure to support the following two operations for a setSof inte-
gers:

INSERT(S, x) insertsx into setS.

DELETE-LARGER-HALF (S) deletes the largest⌈S/2⌉ elements fromS.

Explain how to implement this data structure so that any sequence ofm operations
runs inO(m) time.

17.4 Dynamic tables

In some applications, we do not know in advance how many objects will be stored
in a table. We might allocate space for a table, only to find outlater that it is
not enough. The table must then be reallocated with a larger size, and all objects
stored in the original table must be copied over into the new,larger table. Similarly,
if many objects have been deleted from the table, it may be worthwhile to reallocate
the table with a smaller size. In this section, we study this problem of dynamically
expanding and contracting a table. Using amortized analysis, we shall show that the

17.4 Dynamic tables 417

amortized cost of insertion and deletion is onlyO(1), even though the actual cost of
an operation is large when it triggers an expansion or a contraction. Moreover, we
shall see how to guarantee that the unused space in a dynamic table never exceeds
a constant fraction of the total space.

We assume that the dynamic table supports the operations TABLE-INSERT and
TABLE-DELETE. TABLE-INSERT inserts into the table an item that occupies a
singleslot, that is, a space for one item. Likewise, TABLE-DELETE can be thought
of as removing an item from the table, thereby freeing a slot.The details of the
data-structuring method used to organize the table are unimportant; we might use
a stack (Section 10.1), a heap (Chapter 6), or a hash table (Chapter 11). We might
also use an array or collection of arrays to implement objectstorage, as we did in
Section 10.3.

We shall find it convenient to use a concept introduced in our analysis of hashing
(Chapter 11). We define theload factor α(T) of a nonempty tableT to be the
number of items stored in the table divided by the size (number of slots) of the
table. We assign an empty table (one with no items) size 0, andwe define its load
factor to be 1. If the load factor of a dynamic table is boundedbelow by a constant,
the unused space in the table is never more than a constant fraction of the total
amount of space.

We start by analyzing a dynamic table in which only insertions are performed.
We then consider the more general case in which both insertions and deletions are
allowed.

17.4.1 Table expansion

Let us assume that storage for a table is allocated as an arrayof slots. A table
fills up when all slots have been used or, equivalently, when its load factor is 1.1 In
some software environments, if an attempt is made to insert an item into a full table,
there is no alternative but to abort with an error. We shall assume, however, that our
software environment, like many modern ones, provides a memory-management
system that can allocate and free blocks of storage on request. Thus, when an item
is inserted into a full table, we canexpandthe table by allocating a new table with
more slots than the old table had. Because we always need the table to reside in
contiguous memory, we must allocate a new array for the larger table and then copy
items from the old table into the new table.

A common heuristic is to allocate a new table that has twice asmany slots as
the old one. If only insertions are performed, the load factor of a table is always at

1In some situations, such as an open-address hash table, we may wish to consider a table to be full if
its load factor equals some constant strictly less than 1. (See Exercise 17.4-1.)

418 Chapter 17 Amortized Analysis

least 1/2, and thus the amount of wasted space never exceeds half the total space
in the table.

In the following pseudocode, we assume thatT is an object representing the
table. The fieldtable[T] contains a pointer to the block of storage representing
the table. The fieldnum[T] contains the number of items in the table, and the
field size[T] is the total number of slots in the table. Initially, the table is empty:
num[T] = size[T] = 0.

TABLE-INSERT(T, x)

1 if size[T] = 0
2 then allocatetable[T] with 1 slot
3 size[T]← 1
4 if num[T] = size[T]
5 then allocatenew-tablewith 2 · size[T] slots
6 insert all items intable[T] into new-table
7 freetable[T]
8 table[T] ← new-table
9 size[T]← 2 · size[T]

10 insertx into table[T]
11 num[T] ← num[T] + 1

Notice that we have two “insertion” procedures here: the TABLE-INSERT proce-
dure itself and theelementary insertioninto a table in lines 6 and 10. We can
analyze the running time of TABLE-INSERT in terms of the number of elementary
insertions by assigning a cost of 1 to each elementary insertion. We assume that
the actual running time of TABLE-INSERT is linear in the time to insert individual
items, so that the overhead for allocating an initial table in line 2 is constant and
the overhead for allocating and freeing storage in lines 5 and 7 is dominated by the
cost of transferring items in line 6. We call the event in which thethen clause in
lines 5–9 is executed anexpansion.

Let us analyze a sequence ofn TABLE-INSERT operations on an initially empty
table. What is the costci of the i th operation? If there is room in the current
table (or if this is the first operation), thenci = 1, since we need only perform the
one elementary insertion in line 10. If the current table is full, however, and an
expansion occurs, thenci = i : the cost is 1 for the elementary insertion in line 10
plus i − 1 for the items that must be copied from the old table to the newtable in
line 6. If n operations are performed, the worst-case cost of an operation is O(n),
which leads to an upper bound ofO(n2) on the total running time forn operations.

This bound is not tight, because the cost of expanding the table is not borne often
in the course ofn TABLE-INSERT operations. Specifically, thei th operation causes
an expansion only wheni − 1 is an exact power of 2. The amortized cost of an

17.4 Dynamic tables 419

operation is in factO(1), as we can show using aggregate analysis. The cost of
the i th operation is

ci =
{

i if i − 1 is an exact power of 2,
1 otherwise.

The total cost ofn TABLE-INSERT operations is therefore

n∑

i=1

ci ≤ n+
⌊lg n⌋∑

j=0

2 j

< n+ 2n

= 3n ,

since there are at mostn operations that cost 1 and the costs of the remaining oper-
ations form a geometric series. Since the total cost ofn TABLE-INSERT operations
is 3n, the amortized cost of a single operation is 3.

By using the accounting method, we can gain some feeling for why the amor-
tized cost of a TABLE-INSERT operation should be 3. Intuitively, each item pays
for 3 elementary insertions: inserting itself in the current table, moving itself when
the table is expanded, and moving another item that has already been moved once
when the table is expanded. For example, suppose that the size of the table ism
immediately after an expansion. Then, the number of items inthe table ism/2, and
the table contains no credit. We charge 3 dollars for each insertion. The elementary
insertion that occurs immediately costs 1 dollar. Another dollar is placed as credit
on the item inserted. The third dollar is placed as credit on one of them/2 items
already in the table. Filling the table requiresm/2− 1 additional insertions, and
thus, by the time the table containsm items and is full, each item has a dollar to
pay for its reinsertion during the expansion.

The potential method can also be used to analyze a sequence ofn TABLE-
INSERT operations, and we shall use it in Section 17.4.2 to design a TABLE-
DELETE operation that hasO(1) amortized cost as well. We start by defining a
potential function8 that is 0 immediately after an expansion but builds to the table
size by the time the table is full, so that the next expansion can be paid for by the
potential. The function

8(T) = 2 · num[T] − size[T] (17.5)

is one possibility. Immediately after an expansion, we havenum[T] = size[T]/2,
and thus8(T) = 0, as desired. Immediately before an expansion, we have
num[T] = size[T], and thus8(T) = num[T], as desired. The initial value of the
potential is 0, and since the table is always at least half full, num[T] ≥ size[T]/2,
which implies that8(T) is always nonnegative. Thus, the sum of the amortized
costs ofn TABLE-INSERT operations is an upper bound on the sum of the actual
costs.

420 Chapter 17 Amortized Analysis

To analyze the amortized cost of thei th TABLE-INSERT operation, we letnumi

denote the number of items stored in the table after thei th operation,sizei denote
the total size of the table after thei th operation, and8i denote the potential after
the i th operation. Initially, we havenum0 = 0, size0 = 0, and80 = 0.

If the i th TABLE-INSERT operation does not trigger an expansion, then we have
sizei = sizei−1 and the amortized cost of the operation is

ĉi = ci +8i −8i−1

= 1+ (2 · numi − sizei)− (2 · numi−1− sizei−1)

= 1+ (2 · numi − sizei)− (2(numi −1)− sizei)

= 3 .

If the i th operation does trigger an expansion, then we havesizei = 2 · sizei−1 and
sizei−1 = numi−1 = numi −1, which implies thatsizei = 2 · (numi −1). Thus, the
amortized cost of the operation is

ĉi = ci +8i −8i−1

= numi +(2 · numi − sizei)− (2 · numi−1− sizei−1)

= numi +(2 · numi −2 · (numi −1))− (2(numi −1)− (numi −1))

= numi +2− (numi −1)

= 3 .

Figure 17.3 plots the values ofnumi , sizei , and8i againsti . Notice how the poten-
tial builds to pay for the expansion of the table.

17.4.2 Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to remove the spec-
ified item from the table. It is often desirable, however, tocontract the table when
the load factor of the table becomes too small, so that the wasted space is not ex-
orbitant. Table contraction is analogous to table expansion: when the number of
items in the table drops too low, we allocate a new, smaller table and then copy the
items from the old table into the new one. The storage for the old table can then be
freed by returning it to the memory-management system. Ideally, we would like to
preserve two properties:

• the load factor of the dynamic table is bounded below by a constant, and
• the amortized cost of a table operation is bounded above by a constant.

We assume that cost can be measured in terms of elementary insertions and dele-
tions.

A natural strategy for expansion and contraction is to double the table size when
an item is inserted into a full table and halve the size when a deletion would cause

17.4 Dynamic tables 421

Φi

numisizei

0 8 16 24 32
0

8

16

24

32

i

Figure 17.3 The effect of a sequence ofn TABLE -INSERToperations on the numbernumi of items
in the table, the numbersizei of slots in the table, and the potential8i = 2 ·numi − sizei , each being
measured after thei th operation. The thin line showsnumi , the dashed line showssizei , and the thick
line shows8i . Notice that immediately before an expansion, the potential has built up to the number
of items in the table, and therefore it can pay for moving all the items to the new table. Afterwards,
the potential drops to 0, but it is immediately increased by 2when the item that caused the expansion
is inserted.

the table to become less than half full. This strategy guarantees that the load factor
of the table never drops below 1/2, but unfortunately, it can cause the amortized
cost of an operation to be quite large. Consider the following scenario. We per-
form n operations on a tableT , wheren is an exact power of 2. The firstn/2
operations are insertions, which by our previous analysis cost a total of2(n). At
the end of this sequence of insertions,num[T] = size[T] = n/2. For the sec-
ondn/2 operations, we perform the following sequence:

I, D, D, I, I, D, D, I, I, . . . ,

where I stands for an insertion and D stands for a deletion. The first insertion causes
an expansion of the table to sizen. The two following deletions cause a contraction
of the table back to sizen/2. Two further insertions cause another expansion, and
so forth. The cost of each expansion and contraction is2(n), and there are2(n)

of them. Thus, the total cost of then operations is2(n2), and the amortized cost
of an operation is2(n).

The difficulty with this strategy is obvious: after an expansion, we do not per-
form enough deletions to pay for a contraction. Likewise, after a contraction, we
do not perform enough insertions to pay for an expansion.

422 Chapter 17 Amortized Analysis

We can improve upon this strategy by allowing the load factorof the table to
drop below 1/2. Specifically, we continue to double the table size when an item
is inserted into a full table, but we halve the table size whena deletion causes the
table to become less than 1/4 full, rather than 1/2 full as before. The load factor of
the table is therefore bounded below by the constant 1/4. The idea is that after an
expansion, the load factor of the table is 1/2. Thus, half the items in the table must
be deleted before a contraction can occur, since contraction does not occur unless
the load factor would fall below 1/4. Likewise, after a contraction, the load factor
of the table is also 1/2. Thus, the number of items in the table must be doubled
by insertions before an expansion can occur, since expansion occurs only when the
load factor would exceed 1.

We omit the code for TABLE-DELETE, since it is analogous to TABLE-INSERT.
It is convenient to assume for analysis, however, that if thenumber of items in the
table drops to 0, the storage for the table is freed. That is, if num[T] = 0, then
size[T] = 0.

We can now use the potential method to analyze the cost of a sequence ofn
TABLE-INSERT and TABLE-DELETE operations. We start by defining a potential
function 8 that is 0 immediately after an expansion or contraction and builds as
the load factor increases to 1 or decreases to 1/4. Let us denote the load factor
of a nonempty tableT by α(T) = num[T]/ size[T]. Since for an empty table,
num[T] = size[T] = 0 andα[T] = 1, we always havenum[T] = α(T) · size[T],
whether the table is empty or not. We shall use as our potential function

8(T) =
{

2 · num[T] − size[T] if α(T) ≥ 1/2 ,

size[T]/2− num[T] if α(T) < 1/2 .
(17.6)

Observe that the potential of an empty table is 0 and that the potential is never
negative. Thus, the total amortized cost of a sequence of operations with respect
to 8 is an upper bound on the actual cost of the sequence.

Before proceeding with a precise analysis, we pause to observe some proper-
ties of the potential function. Notice that when the load factor is 1/2, the poten-
tial is 0. When the load factor is 1, we havesize[T] = num[T], which implies
8(T) = num[T], and thus the potential can pay for an expansion if an item isin-
serted. When the load factor is 1/4, we havesize[T] = 4 · num[T], which implies
8(T) = num[T], and thus the potential can pay for a contraction if an item is
deleted. Figure 17.4 illustrates how the potential behavesfor a sequence of opera-
tions.

To analyze a sequence ofn TABLE-INSERT and TABLE-DELETE operations,
we let ci denote the actual cost of thei th operation,̂ci denote its amortized cost
with respect to8, numi denote the number of items stored in the table after thei th
operation,sizei denote the total size of the table after thei th operation,αi denote
the load factor of the table after thei th operation, and8i denote the potential after
the i th operation. Initially,num0 = 0, size0 = 0, α0 = 1, and80 = 0.

17.4 Dynamic tables 423

numi

Φi

sizei

0 8 16 24 32 40 48
0

8

16

24

32

i

Figure 17.4 The effect of a sequence ofn TABLE -INSERTand TABLE -DELETEoperations on the
numbernumi of items in the table, the numbersizei of slots in the table, and the potential

8i =
{

2 · numi − sizei if αi ≥ 1/2 ,

sizei /2− numi if αi < 1/2 ,

each being measured after thei th operation. The thin line showsnumi , the dashed line showssizei ,
and the thick line shows8i . Notice that immediately before an expansion, the potential has built up
to the number of items in the table, and therefore it can pay for moving all the items to the new table.
Likewise, immediately before a contraction, the potentialhas built up to the number of items in the
table.

We start with the case in which thei th operation is TABLE-INSERT. The analysis
is identical to that for table expansion in Section 17.4.1 ifαi−1 ≥ 1/2. Whether
the table expands or not, the amortized costĉi of the operation is at most 3. If
αi−1 < 1/2, the table cannot expand as a result of the operation, sinceexpansion
occurs only whenαi−1 = 1. If αi < 1/2 as well, then the amortized cost of thei th
operation is

ĉi = ci +8i −8i−1

= 1+ (sizei /2− numi)− (sizei−1 /2− numi−1)

= 1+ (sizei /2− numi)− (sizei /2− (numi −1))

= 0 .

If αi−1 < 1/2 butαi ≥ 1/2, then

424 Chapter 17 Amortized Analysis

ĉi = ci +8i −8i−1

= 1+ (2 · numi − sizei)− (sizei−1 /2− numi−1)

= 1+ (2(numi−1+1)− sizei−1)− (sizei−1 /2− numi−1)

= 3 · numi−1−
3

2
sizei−1+3

= 3αi−1 sizei−1−
3

2
sizei−1+3

<
3

2
sizei−1−

3

2
sizei−1+3

= 3 .

Thus, the amortized cost of a TABLE-INSERT operation is at most 3.
We now turn to the case in which thei th operation is TABLE-DELETE. In this

case,numi = numi−1−1. If αi−1 < 1/2, then we must consider whether the
operation causes a contraction. If it does not, thensizei = sizei−1 and the amortized
cost of the operation is

ĉi = ci +8i −8i−1

= 1+ (sizei /2− numi)− (sizei−1 /2− numi−1)

= 1+ (sizei /2− numi)− (sizei /2− (numi +1))

= 2 .

If αi−1 < 1/2 and thei th operation does trigger a contraction, then the actual cost
of the operation isci = numi +1, since we delete one item and movenumi items.
We havesizei /2= sizei−1 /4= numi−1 = numi +1, and the amortized cost of the
operation is

ĉi = ci +8i −8i−1

= (numi +1)+ (sizei /2− numi)− (sizei−1 /2− numi−1)

= (numi +1)+ ((numi +1)− numi)− ((2 · numi +2)− (numi +1))

= 1 .

When thei th operation is a TABLE-DELETE andαi−1 ≥ 1/2, the amortized cost is
also bounded above by a constant. The analysis is left as Exercise 17.4-2.

In summary, since the amortized cost of each operation is bounded above by
a constant, the actual time for any sequence ofn operations on a dynamic table
is O(n).

Exercises

17.4-1
Suppose that we wish to implement a dynamic, open-address hash table. Why
might we consider the table to be full when its load factor reaches some valueα

Problems for Chapter 17 425

that is strictly less than 1? Describe briefly how to make insertion into a dynamic,
open-address hash table run in such a way that the expected value of the amortized
cost per insertion isO(1). Why is the expected value of the actual cost per insertion
not necessarilyO(1) for all insertions?

17.4-2
Show that ifαi−1 ≥ 1/2 and thei th operation on a dynamic table is TABLE-
DELETE, then the amortized cost of the operation with respect to thepotential
function (17.6) is bounded above by a constant.

17.4-3
Suppose that instead of contracting a table by halving its size when its load factor
drops below 1/4, we contract it by multiplying its size by 2/3 when its load factor
drops below 1/3. Using the potential function

8(T) = |2 · num[T] − size[T]| ,

show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded
above by a constant.

Problems

17-1 Bit-reversed binary counter
Chapter 30 examines an important algorithm called the Fast Fourier Transform,
or FFT. The first step of the FFT algorithm performs abit-reversal permutationon
an input arrayA[0 . . n−1] whose length isn = 2k for some nonnegative integerk.
This permutation swaps elements whose indices have binary representations that
are the reverse of each other.

We can express each indexa as ak-bit sequence〈ak−1, ak−2, . . . , a0〉, where
a =

∑k−1
i=0 ai 2i . We define

revk(〈ak−1, ak−2, . . . , a0〉) = 〈a0, a1, . . . , ak−1〉 ;

thus,

revk(a) =
k−1∑

i=0

ak−i−12i .

For example, ifn = 16 (or, equivalently,k = 4), then revk(3) = 12, since the 4-bit
representation of 3 is 0011, which when reversed gives 1100,the 4-bit representa-
tion of 12.

426 Chapter 17 Amortized Analysis

a. Given a function revk that runs in2(k) time, write an algorithm to perform the
bit-reversal permutation on an array of lengthn = 2k in O(nk) time.

We can use an algorithm based on an amortized analysis to improve the running
time of the bit-reversal permutation. We maintain a “bit-reversed counter” and a
procedure BIT-REVERSED-INCREMENT that, when given a bit-reversed-counter
valuea, produces revk(revk(a) + 1). If k = 4, for example, and the bit-reversed
counter starts at 0, then successive calls to BIT-REVERSED-INCREMENT produce
the sequence

0000, 1000, 0100, 1100, 0010, 1010, . . . = 0, 8, 4, 12, 2, 10,

b. Assume that the words in your computer storek-bit values and that in unit time,
your computer can manipulate the binary values with operations such as shifting
left or right by arbitrary amounts, bitwise-AND, bitwise-OR, etc. Describe
an implementation of the BIT-REVERSED-INCREMENT procedure that allows
the bit-reversal permutation on ann-element array to be performed in a total
of O(n) time.

c. Suppose that you can shift a word left or right by only one bit in unit time. Is it
still possible to implement anO(n)-time bit-reversal permutation?

17-2 Making binary search dynamic
Binary search of a sorted array takes logarithmic search time, but the time to insert
a new element is linear in the size of the array. We can improvethe time for
insertion by keeping several sorted arrays.

Specifically, suppose that we wish to support SEARCH and INSERT on a set
of n elements. Letk = ⌈lg(n+ 1)⌉, and let the binary representation ofn be
〈nk−1, nk−2, . . . , n0〉. We havek sorted arraysA0, A1, . . . , Ak−1, where fori =
0, 1, . . . , k − 1, the length of arrayAi is 2i . Each array is either full or empty,
depending on whetherni = 1 orni = 0, respectively. The total number of elements
held in allk arrays is therefore

∑k−1
i=0 ni 2i = n. Although each individual array is

sorted, there is no particular relationship between elements in different arrays.

a. Describe how to perform the SEARCH operation for this data structure. Analyze
its worst-case running time.

b. Describe how to insert a new element into this data structure. Analyze its worst-
case and amortized running times.

c. Discuss how to implement DELETE.

Problems for Chapter 17 427

17-3 Amortized weight-balanced trees
Consider an ordinary binary search tree augmented by addingto each nodex the
field size[x] giving the number of keys stored in the subtree rooted atx. Let α be a
constant in the range 1/2≤ α < 1. We say that a given nodex is α-balancedif

size[left[x]] ≤ α · size[x]

and

size[right[x]] ≤ α · size[x] .

The tree as a whole isα-balancedif every node in the tree isα-balanced. The
following amortized approach to maintaining weight-balanced trees was suggested
by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Givena nodex in
an arbitrary binary search tree, show how to rebuild the subtree rooted atx so
that it becomes 1/2-balanced. Your algorithm should run in time2(size[x]),
and it can useO(size[x]) auxiliary storage.

b. Show that performing a search in ann-node α-balanced binary search tree
takesO(lg n) worst-case time.

For the remainder of this problem, assume that the constantα is strictly greater
than 1/2. Suppose that INSERT and DELETE are implemented as usual for ann-
node binary search tree, except that after every such operation, if any node in the
tree is no longerα-balanced, then the subtree rooted at the highest such node in the
tree is “rebuilt” so that it becomes 1/2-balanced.

We shall analyze this rebuilding scheme using the potentialmethod. For a nodex
in a binary search treeT , we define

1(x) = |size[left[x]] − size[right[x]] | ,

and we define the potential ofT as

8(T) = c
∑

x∈T :1(x)≥2

1(x) ,

wherec is a sufficiently large constant that depends onα.

c. Argue that any binary search tree has nonnegative potentialand that a 1/2-
balanced tree has potential 0.

d. Suppose thatm units of potential can pay for rebuilding anm-node subtree.
How large mustc be in terms ofα in order for it to takeO(1) amortized time
to rebuild a subtree that is notα-balanced?

e. Show that inserting a node into or deleting a node from ann-nodeα-balanced
tree costsO(lg n) amortized time.

428 Chapter 17 Amortized Analysis

17-4 The cost of restructuring red-black trees
There are four basic operations on red-black trees that perform structural modi-
fications: node insertions, node deletions, rotations, and color modifications. We
have seen that RB-INSERT and RB-DELETE use onlyO(1) rotations, node inser-
tions, and node deletions to maintain the red-black properties, but they may make
many more color modifications.

a. Describe a legal red-black tree withn nodes such that calling RB-INSERT to
add the(n + 1)st node causes�(lg n) color modifications. Then describe a
legal red-black tree withn nodes for which calling RB-DELETE on a particular
node causes�(lg n) color modifications.

Although the worst-case number of color modifications per operation can be log-
arithmic, we shall prove that any sequence ofm RB-INSERT and RB-DELETE

operations on an initially empty red-black tree causesO(m) structural modifica-
tions in the worst case.

b. Some of the cases handled by the main loop of the code of both RB-INSERT-
FIXUP and RB-DELETE-FIXUP areterminating: once encountered, they cause
the loop to terminate after a constant number of additional operations. For each
of the cases of RB-INSERT-FIXUP and RB-DELETE-FIXUP, specify which are
terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7.)

We shall first analyze the structural modifications when onlyinsertions are per-
formed. LetT be a red-black tree, and define8(T) to be the number of red nodes
in T . Assume that 1 unit of potential can pay for the structural modifications per-
formed by any of the three cases of RB-INSERT-FIXUP.

c. Let T ′ be the result of applying Case 1 of RB-INSERT-FIXUP to T . Argue that
8(T ′) = 8(T)− 1.

d. Node insertion into a red-black tree using RB-INSERTcan be broken down into
three parts. List the structural modifications and potential changes resulting
from lines 1–16 of RB-INSERT, from nonterminating cases of RB-INSERT-
FIXUP, and from terminating cases of RB-INSERT-FIXUP.

e. Using part (d), argue that the amortized number of structural modifications per-
formed by any call of RB-INSERT is O(1).

We now wish to prove that there areO(m) structural modifications when there are
both insertions and deletions. Let us define, for each nodex,

w(x) =





0 if x is red,

1 if x is black and has no red children,
0 if x is black and has one red child,
2 if x is black and has two red children.

Notes for Chapter 17 429

Now we redefine the potential of a red-black treeT as

8(T) =
∑

x∈T

w(x) ,

and letT ′ be the tree that results from applying any nonterminating case of RB-
INSERT-FIXUP or RB-DELETE-FIXUP to T .

f. Show that8(T ′) ≤ 8(T) − 1 for all nonterminating cases of RB-INSERT-
FIXUP. Argue that the amortized number of structural modifications performed
by any call of RB-INSERT-FIXUP is O(1).

g. Show that8(T ′) ≤ 8(T) − 1 for all nonterminating cases of RB-DELETE-
FIXUP. Argue that the amortized number of structural modifications performed
by any call of RB-DELETE-FIXUP is O(1).

h. Complete the proof that in the worst case, any sequence ofm RB-INSERT and
RB-DELETE operations performsO(m) structural modifications.

Chapter notes

Aggregate analysis was used by Aho, Hopcroft, and Ullman [5]. Tarjan [293]
surveys the accounting and potential methods of amortized analysis and presents
several applications. He attributes the accounting methodto several authors, in-
cluding M. R. Brown, R. E. Tarjan, S. Huddleston, and K. Mehlhorn. He attributes
the potential method to D. D. Sleator. The term “amortized” is due to D. D. Sleator
and R. E. Tarjan.

Potential functions are also useful for proving lower bounds for certain types of
problems. For each configuration of the problem, we define a potential function
that maps the configuration to a real number. Then we determine the potential8init

of the initial configuration, the potential8final of the final configuration, and the
maximum change in potential18max due to any step. The number of steps must
therefore be at least|8final−8init| / |18max|. Examples of the use of potential
functions for proving lower bounds in I/O complexity appearin works by Cormen
[71], Floyd [91], and Aggarwal and Vitter [4]. Krumme, Cybenko, and Venkatara-
man [194] applied potential functions to prove lower boundson gossiping: com-
municating a unique item from each vertex in a graph to every other vertex.

