
5 Orthogonal Range Searching
Querying a Database

At first sight it seems that databases have little to do with geometry. Nevertheless,

many types of questions—from now on called queries—about data in a database

can be interpreted geometrically. To this end we transform records in a database

into points in a multi-dimensional space, and we transform the queries about

the records into queries on this set of points. Let’s demonstrate this with an

example.

date of birth

salary

19,500,000 19,559,999

3,000

4,000

G. Ometer

born: Aug 19, 1954

salary: $3,500

Figure 5.1
Interpreting a database query

geometrically

Consider a database for personnel administration. In such a database the

name, address, date of birth, salary, and so on, of each employee are stored. A

typical query one may want to perform is to report all employees born between

1950 and 1955 who earn between $3,000 and $4,000 a month. To formulate

this as a geometric problem we represent each employee by a point in the

plane. The first coordinate of the point is the date of birth, represented by the

integer 10,000× year + 100×month + day, and the second coordinate is the

monthly salary. With the point we also store the other information we have

about the employee, such as name and address. The database query asking

for all employees born between 1950 and 1955 who earn between $3,000 and 95

Chapter 5
ORTHOGONAL RANGE SEARCHING

$4,000 transforms into the following geometric query: report all points whose

first coordinate lies between 19,500,000 and 19,559,999, and whose second

coordinate lies between 3,000 and 4,000. In other words, we want to report all

the points inside an axis-parallel query rectangle—see Figure 5.1.

What if we also have information about the number of children of each

employee, and we would like to be able to ask queries like “report all employees

born between 1950 and 1955 who earn between $3,000 and $4,000 a month and

have between two and four children”? In this case we represent each employee

by a point in 3-dimensional space: the first coordinate represents the date of

birth, the second coordinate the salary, and the third coordinate the number of

children. To answer the query we now have to report all points inside the axis-

parallel box [19,500,000 : 19,559,999]×[3,000 : 4,000]×[2 : 4]. In general, if

19,500,000 19,559,999

3,000

4,000

2

4

we are interested in answering queries on d fields of the records in our database,

we transform the records to points in d-dimensional space. A query asking to

report all records whose fields lie between specified values then transforms to

a query asking for all points inside a d-dimensional axis-parallel box. Such a

query is called a rectangular range query, or an orthogonal range query, in

computational geometry. In this chapter we shall study data structures for such

queries.

5.1 1-Dimensional Range Searching

Before we try to tackle the 2- or higher-dimensional rectangular range searching

problem, let’s have a look at the 1-dimensional version. The data we are given

is a set of points in 1-dimensional space—in other words, a set of real numbers.

A query asks for the points inside a 1-dimensional query rectangle—in other

words, an interval [x : x′].
Let P := {p1, p2, . . . , pn} be the given set of points on the real line. We can

solve the 1-dimensional range searching problem efficiently using a well-known

data structure: a balanced binary search tree T. (A solution that uses an array is

also possible. This solution does not generalize to higher dimensions, however,

nor does it allow for efficient updates on P.) The leaves of T store the points

of P and the internal nodes of T store splitting values to guide the search. We

denote the splitting value stored at a node ν by xν . We assume that the left

subtree of a node ν contains all the points smaller than or equal to xν , and that

the right subtree contains all the points strictly greater than xν .

To report the points in a query range [x : x′] we proceed as follows. We

search with x and x′ in T. Let µ and µ ′ be the two leaves where the searches

end, respectively. Then the points in the interval [x : x′] are the ones stored in the

leaves in between µ and µ ′ plus, possibly, the point stored at µ and the point

stored at µ ′. When we search with the interval [18 : 77] in the tree of Figure 5.2,

for instance, we have to report all the points stored in the dark grey leaves, plus

the point stored in the leaf µ . How can we find the leaves in between µ and

µ ′? As Figure 5.2 already suggests, they are the leaves of certain subtrees in

between the search paths to µ and µ ′. (In Figure 5.2, these subtrees are dark96

Section 5.1
1-DIMENSIONAL RANGE SEARCHING

µ µ ′
3 10 19 23 30 37

49

59 62 70 80

893 19

10

30

37

59 70

62

100

89

8023

49

100 105
Figure 5.2
A 1-dimensional range query in a binary

search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the

subtrees that we select are rooted at nodes ν in between the two search paths

whose parents are on the search path. To find these nodes we first search for

the node νsplit where the paths to x and x′ split. This is done with the following

subroutine. Let lc(ν) and rc(ν) denote the left and right child, respectively, of a

node ν .

FINDSPLITNODE(T,x,x′)
Input. A tree T and two values x and x′ with x � x′.
Output. The node ν where the paths to x and x′ split, or the leaf where both

paths end.

1. ν ← root(T)
2. while ν is not a leaf and (x′ � xν or x > xν)

3. do if x′ � xν
4. then ν ← lc(ν)
5. else ν ← rc(ν)
6. return ν

Starting from νsplit we then follow the search path of x. At each node where the

path goes left, we report all the leaves in the right subtree, because this subtree

is in between the two search paths. Similarly, we follow the path of x′ and we

report the leaves in the left subtree of nodes where the path goes right. Finally,

νsplit

µ µ ′

root(T)

the selected subtrees

we have to check the points stored at the leaves where the paths end; they may

or may not lie in the range [x : x′].
Next we describe the query algorithm in more detail. It uses a subroutine

REPORTSUBTREE, which traverses the subtree rooted at a given node and

reports the points stored at its leaves. Since the number of internal nodes of any

binary tree is less than its number of leaves, this subroutine takes an amount of

time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : x′])
Input. A binary search tree T and a range [x : x′].
Output. All points stored in T that lie in the range.

1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf

3. then Check if the point stored at νsplit must be reported. 97

Chapter 5
ORTHOGONAL RANGE SEARCHING

4. else (∗ Follow the path to x and report the points in subtrees right of the

path. ∗)

5. ν ← lc(νsplit)
6. while ν is not a leaf

7. do if x � xν
8. then REPORTSUBTREE(rc(ν))
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at the leaf ν must be reported.

12. Similarly, follow the path to x′, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path

ends must be reported.

We first prove the correctness of the algorithm.

Lemma 5.1 Algorithm 1DRANGEQUERY reports exactly those points that lie

in the query range.

Proof. We first show that any reported point p lies in the query range. If p is

stored at the leaf where the path to x or to x′ ends, then p is tested explicitly for

inclusion in the query range. Otherwise, p is reported in a call to REPORTSUB-

TREE. Assume this call was made when we followed the path to x. Let ν be the

node on the path such that p was reported in the call REPORTSUBTREE(rc(ν)).
Since ν and, hence, rc(ν) lie in the left subtree of νsplit, we have p � xνsplit

.

Because the search path of x′ goes right at νsplit this means that p < x′. On the

other hand, the search path of x goes left at ν and p is in the right subtree of ν ,

so x < p. It follows that p ∈ [x : x′]. The proof that p lies in the range when it is

reported while following the path to x′ is symmetrical.

It remains to prove that any point p in the range is reported. Let µ be the

leaf where p is stored, and let ν be the lowest ancestor of µ that is visited by the

query algorithm. We claim that ν = µ , which implies that p is reported. Assume

for a contradiction that ν �= µ . Observe that ν cannot be a node visited in a call

to REPORTSUBTREE, because all descendants of such a node are visited. Hence,

ν is either on the search path to x, or on the search path to x′, or both. Because

all three cases are similar, we only consider the third case. Assume first that µ
is in the left subtree of ν . Then the search path of x goes right at ν (otherwise ν
would not be the lowest visited ancestor). But this implies that p < x. Similarly,

if µ is in the right subtree of ν , then the path of x′ goes left at ν , and p > x′. In

both cases, the assumption that p lies in the range is contradicted.

We now turn our attention to the performance of the data structure. Because

it is a balanced binary search tree, it uses O(n) storage and it can be built in

O(n logn) time. What about the query time? In the worst case all the points

could be in the query range. In this case the query time will be Θ(n), which

seems bad. Indeed, we do not need any data structure to achieve Θ(n) query

time; simply checking all the points against the query range leads to the same

result. On the other hand, a query time of Θ(n) cannot be avoided when we

have to report all the points. Therefore we shall give a more refined analysis98

Section 5.2
KD-TREES

of the query time. The refined analysis takes not only n, the number of points

in the set P, into account, but also k, the number of reported points. In other

words, we will show that the query algorithm is output-sensitive, a concept we

already encountered in Chapter 2.

Recall that the time spent in a call to REPORTSUBTREE is linear in the

number of reported points. Hence, the total time spent in all such calls is O(k).
The remaining nodes that are visited are nodes on the search path of x or x′.
Because T is balanced, these paths have length O(logn). The time we spend

at each node is O(1), so the total time spent in these nodes is O(logn), which

gives a query time of O(logn+ k).
The following theorem summarizes the results for 1-dimensional range

searching:

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and

has O(n logn) construction time, such that the points in a query range can be

reported in time O(k + logn), where k is the number of reported points.

5.2 Kd-Trees

Now let’s go to the 2-dimensional rectangular range searching problem. Let

P be a set of n points in the plane. In the remainder of this section we assume

that no two points in P have the same x-coordinate, and no two points have the

same y-coordinate. This restriction is not very realistic, especially not if the

points represent employees and the coordinates are things like salary or number

of children. Fortunately, the restriction can be overcome with a nice trick that

we describe in Section 5.5.

A 2-dimensional rectangular range query on P asks for the points from P lying

inside a query rectangle [x : x′]× [y : y′]. A point p := (px, py) lies inside this

rectangle if and only if

px ∈ [x : x′] and py ∈ [y : y′].

We could say that a 2-dimensional rectangular range query is composed of two x px x′

y

y′

py
p

1-dimensional sub-queries, one on the x-coordinate of the points and one on the

y-coordinate.

In the previous section we saw a data structure for 1-dimensional range

queries. How can we generalize this structure—which was just a binary search

tree—to 2-dimensional range queries? Let’s consider the following recursive

definition of the binary search tree: the set of (1-dimensional) points is split into

two subsets of roughly equal size; one subset contains the points smaller than or

equal to the splitting value, the other subset contains the points larger than the

splitting value. The splitting value is stored at the root, and the two subsets are

stored recursively in the two subtrees.

In the 2-dimensional case each point has two values that are important:

its x- and its y-coordinate. Therefore we first split on x-coordinate, next on 99

Chapter 5
ORTHOGONAL RANGE SEARCHING

y-coordinate, then again on x-coordinate, and so on. More precisely, the process

is as follows. At the root we split the set P with a vertical line � into two subsets

of roughly equal size. The splitting line is stored at the root. Pleft, the subset of

points to the left or on the splitting line, is stored in the left subtree, and Pright,

the subset to the right of it, is stored in the right subtree. At the left child of the

�

Pleft Pright

root we split Pleft into two subsets with a horizontal line; the points below or on

it are stored in the left subtree of the left child, and the points above it are stored

in the right subtree. The left child itself stores the splitting line. Similarly, the

set Pright is split with a horizontal line into two subsets, which are stored in the

left and right subtree of the right child. At the grandchildren of the root, we

split again with a vertical line. In general, we split with a vertical line at nodes

whose depth is even, and we split with a horizontal line at nodes whose depth is

odd. Figure 5.3 illustrates how the splitting is done and what the corresponding

binary tree looks like. A tree like this is called a kd-tree. Originally, the name

Figure 5.3
A kd-tree: on the left the way the plane

is subdivided and on the right the

corresponding binary tree

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

�1

�2

�3

�4

�5

�6

�7

�8

�9

p1 p2

�8

�4

�2

�1

�5

p3 p4 p5

p6 p7

p8 p9 p10

�7�6

�9

�3

stood for k-dimensional tree; the tree we described above would be a 2d-tree.

Nowadays, the original meaning is lost, and what used to be called a 2d-tree is

now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.

This procedure has two parameters: a set of points and an integer. The first

parameter is the set for which we want to build the kd-tree; initially this is the

set P. The second parameter is depth of recursion or, in other words, the depth

of the root of the subtree that the recursive call constructs. The depth parameter

is zero at the first call. The depth is important because, as explained above,

it determines whether we must split with a vertical or a horizontal line. The

procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P,depth)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing P.

1. if P contains only one point

2. then return a leaf storing this point

3. else if depth is even

4. then Split P into two subsets with a vertical line � through the

median x-coordinate of the points in P. Let P1 be the set of100

Section 5.2
KD-TREES

points to the left of � or on �, and let P2 be the set of points

to the right of �.

5. else Split P into two subsets with a horizontal line � through

the median y-coordinate of the points in P. Let P1 be the

set of points below � or on �, and let P2 be the set of points

above �.

6. νleft ← BUILDKDTREE(P1,depth+1)

7. νright ← BUILDKDTREE(P2,depth+1)

8. Create a node ν storing �, make νleft the left child of ν , and make

νright the right child of ν .

9. return ν

The algorithm uses the convention that the point on the splitting line—the one

determining the median x- or y-coordinate—belongs to the subset to the left of,

or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the �n/2�-th smallest number. This means that

the median of two values is the smaller one, which ensures that the algorithm

terminates.

Before we come to the query algorithm, let’s analyze the construction time

of a 2-dimensional kd-tree. The most expensive step that is performed at every

recursive call is finding the splitting line. This requires determining the median

x-coordinate or the median y-coordinate, depending on whether the depth is

even or odd. Median finding can be done in linear time. Linear time median

finding algorithms, however, are rather complicated. A better approach is to

presort the set of points both on x- and on y-coordinate. The parameter set P is

now passed to the procedure in the form of two sorted lists, one on x-coordinate

and one on y-coordinate. Given the two sorted lists, it is easy to find the median

x-coordinate (when the depth is even) or the median y-coordinate (when the

depth is odd) in linear time. It is also easy to construct the sorted lists for the

two recursive calls in linear time from the given lists. Hence, the building time

T (n) satisfies the recurrence

T (n) =

{
O(1), if n = 1,

O(n)+2T (�n/2�), if n > 1,

which solves to O(n logn). This bound subsumes the time we spend for presort-

ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores

a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary

tree, and every leaf and internal node uses O(1) storage, this implies that the

total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-

structed in O(n logn) time.

We now turn to the query algorithm. The splitting line stored at the root

partitions the plane into two half-planes. The points in the left half-plane are

stored in the left subtree, and the points in the right half-plane are stored in the 101

Chapter 5
ORTHOGONAL RANGE SEARCHING

right subtree. In a sense, the left child of the root corresponds to the left half-

plane and the right child corresponds to the right half-plane. (The convention

used in BUILDKDTREE that the point on the splitting line belongs to the left

subset implies that the left half-plane is closed to the right and the right half-

plane is open to the left.) The other nodes in a kd-tree correspond to a region

of the plane as well. The left child of the left child of the root, for instance,

corresponds to the region bounded to the right by the splitting line stored at

the root and bounded from above by the line stored at the left child of the root.

In general, the region corresponding to a node ν is a rectangle, which can be

unbounded on one or more sides. It is bounded by splitting lines stored at

ancestors of ν—see Figure 5.4. We denote the region corresponding to a node

Figure 5.4
Correspondence between nodes in a

kd-tree and regions in the plane

�1

�2

�3

ν

region(ν)

�3

�2

�1

ν by region(ν). The region of the root of a kd-tree is simply the whole plane.

Observe that a point is stored in the subtree rooted at a node ν if and only if it

lies in region(ν). For instance, the subtree of the node ν in Figure 5.4 stores

the points indicated as black dots. Therefore we have to search the subtree

rooted at ν only if the query rectangle intersects region(ν). This observation

leads to the following query algorithm: we traverse the kd-tree, but visit only

nodes whose region is intersected by the query rectangle. When a region is

fully contained in the query rectangle, we can report all the points stored in

its subtree. When the traversal reaches a leaf, we have to check whether the

point stored at the leaf is contained in the query region and, if so, report it.

Figure 5.5 illustrates the query algorithm. (Note that the kd-tree of Figure 5.5

could not have been constructed by Algorithm BUILDKDTREE; the median

wasn’t always chosen as the split value.) The grey nodes are visited when we

query with the grey rectangle. The node marked with a star corresponds to a

region that is completely contained in the query rectangle; in the figure this

rectangular region is shown darker. Hence, the dark grey subtree rooted at this

node is traversed and all points stored in it are reported. The other leaves that are

visited correspond to regions that are only partially inside the query rectangle.

Hence, the points stored in them must be tested for inclusion in the query range;

this results in points p6 and p11 being reported, and points p3, p12, and p13 not

being reported. The query algorithm is described by the following recursive102

Section 5.2
KD-TREES

*p1 p2

p2

p1

p3

p3 p4

p4
p5

p5

p6

p6

p7

p7 p8

p8

p9

p9

p10

p10

p11
p11

p12

p12 p13

p13

Figure 5.5
A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.

It uses a subroutine REPORTSUBTREE(ν), which traverses the subtree rooted

at a node ν and reports all the points stored at its leaves. Recall that lc(ν) and

rc(ν) denote the left and right child of a node ν , respectively.

Algorithm SEARCHKDTREE(ν ,R)

Input. The root of (a subtree of) a kd-tree, and a range R.

Output. All points at leaves below ν that lie in the range.

1. if ν is a leaf

2. then Report the point stored at ν if it lies in R.

3. else if region(lc(ν)) is fully contained in R
4. then REPORTSUBTREE(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SEARCHKDTREE(lc(ν),R)

7. if region(rc(ν)) is fully contained in R
8. then REPORTSUBTREE(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SEARCHKDTREE(rc(ν),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node ν . To be able to do this test

we can compute region(ν) for all nodes ν during the preprocessing phase and

store it, but this is not necessary: one can maintain the current region through

the recursive calls using the lines stored in the internal nodes. For instance, the

region corresponding to the left child of a node ν at even depth can be computed

from region(ν) as follows:

region(ν)

�(ν)

region(lc(ν))

�(ν)left

region(lc(ν)) = region(ν)∩ �(ν)left,

where �(ν) is the splitting line stored at ν , and �(ν)left is the half-plane to the

left of and including �(ν). 103

Chapter 5
ORTHOGONAL RANGE SEARCHING

Observe that the query algorithm above never assumes that the query range

R is a rectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points

can be performed in O(
√

n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points

stored in its leaves is linear in the number of reported points. Hence, the total

time required for traversing subtrees in steps 4 and 8 is O(k), where k is the

total number of reported points. It remains to bound the number of nodes

visited by the query algorithm that are not in one of the traversed subtrees.

(These are the light grey nodes in Figure 5.5.) For each such node ν , the query

range properly intersects region(ν), that is, region(ν) is intersected by, but not

fully contained in the range. In other words, the boundary of the query range

intersects region(ν). To analyze the number of such nodes, we shall bound the

number of regions intersected by any vertical line. This will give us an upper

bound on the number of regions intersected by the left and right edge of the

query rectangle. The number of regions intersected by the bottom and top edges

of the query range can be bounded in the same way.

Let � be a vertical line, and let T be a kd-tree. Let �(root(T)) be the splitting

line stored at the root of the kd-tree. The line � intersects either the region to

the left of �(root(T)) or the region to the right of �(root(T)), but not both. This

observation seems to imply that Q(n), the number of intersected regions in a

kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+Q(n/2). But

this is not true, because the splitting lines are horizontal at the children of the

root. This means that if the line � intersects for instance region(lc(root(T)), then

it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,

and the recurrence above is incorrect. To overcome this problem we have to

make sure that the recursive situation is exactly the same as the original situation:

the root of the subtree must contain a vertical splitting line. This leads us to

redefine Q(n) as the number of intersected regions in a kd-tree storing n points

whose root contains a vertical splitting line. To write a recurrence for Q(n) we

now have to go down two steps in the tree. Each of the four nodes at depth

two in the tree corresponds to a region containing n/4 points. (To be precise, a

region can contain at most ��n/2�/2� = �n/4� points, but asymptotically this

does not influence the outcome of the recurrence below.) Two of the four nodes

correspond to intersected regions, so we have to count the number of intersected

regions in these subtrees recursively. Moreover, � intersects the region of the

root and of one of its children. Hence, Q(n) satisfies the recurrence

Q(n) =

{
O(1), if n = 1,

2+2Q(n/4), if n > 1.

This recurrence solves to Q(n) = O(
√

n). In other words, any vertical line

intersects O(
√

n) regions in a kd-tree. In a similar way one can prove that the104

Section 5.3
RANGE TREES

total number of regions intersected by a horizontal line is O(
√

n). The total

number of regions intersected by the boundary of a rectangular query range is

bounded by O(
√

n) as well.

The analysis of the query time that we gave above is rather pessimistic: we

bounded the number of regions intersecting an edge of the query rectangle by the

number of regions intersecting the line through it. In many practical situations

the range will be small. As a result, the edges are short and will intersect much

fewer regions. For example, when we search with a range [x : x]×[y : y]—this

query effectively asks whether the point (x,y) is in the set—the query time is

bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage

and can be built in O(n logn) time. A rectangular range query on the kd-tree

takes O(
√

n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.

The construction algorithm is very similar to the planar case: At the root, we

split the set of points into two subsets of roughly the same size by a hyperplane

perpendicular to the x1-axis. In other words, at the root the point set is partitioned

based on the first coordinate of the points. At the children of the root the partition

is based on the second coordinate, at nodes at depth two on the third coordinate,

and so on, until at depth d − 1 we partition on the last coordinate. At depth

d we start all over again, partitioning on first coordinate. The recursion stops

when there is only one point left, which is then stored at a leaf. Because a

d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses

O(n) storage. The construction time is O(n logn). (As usual, we assume d to

be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The

query algorithm visits those nodes whose regions are properly intersected by

the query range, and traverses subtrees (to report the points stored in the leaves)

that are rooted at nodes whose region is fully contained in the query range. It

can be shown that the query time is bounded by O(n1−1/d + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(
√

n+ k) query

time. So when the number of reported points is small, the query time is relatively

high. In this section we shall describe another data structure for rectangular

range queries, the range tree, which has a better query time, namely O(log2 n+
k). The price we have to pay for this improvement is an increase in storage from

O(n) for kd-trees to O(n logn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of

two 1-dimensional sub-queries, one on the x-coordinate of the points and one 105

Chapter 5
ORTHOGONAL RANGE SEARCHING

on the y-coordinate. This gave us the idea to split the given point set alternately

on x- and y-coordinate, leading to the kd-tree. To obtain the range tree, we shall

use this observation in a different way.

Let P be a set of n points in the plane that we want to preprocess for

rectangular range queries. Let [x : x′]× [y : y′] be the query range. We first

concentrate on finding the points whose x-coordinate lies in [x : x′], the x-

interval of the query rectangle, and worry about the y-coordinate later. If we

only care about the x-coordinate then the query is a 1-dimensional range query.

In Section 5.1 we have seen how to answer such a query: with a binary search

tree on the x-coordinate of the points. The query algorithm was roughly as

follows. We search with x and x′ in the tree until we get to a node νsplit where

the search paths split. From the left child of νsplit we continue the search with x,

and at every node ν where the search path of x goes left, we report all points

in the right subtree of ν . Similarly, we continue the search with x′ at the right

child of νsplit, and at every node ν where the search path of x′ goes right we

report all points in the left subtree of ν . Finally, we check the leaves µ and µ ′
where the two paths end to see if they contain a point in the range. In effect, we

select a collection of O(logn) subtrees that together contain exactly the points

whose x-coordinate lies in the x-interval of the query rectangle.

νsplit

µ µ ′

Let’s call the subset of points stored in the leaves of the subtree rooted at a

node ν the canonical subset of ν . The canonical subset of the root of the tree,

for instance, is the whole set P. The canonical subset of a leaf is simply the

point stored at that leaf. We denote the canonical subset of node ν by P(ν). We

have just seen that the subset of points whose x-coordinate lies in a query range

can be expressed as the disjoint union of O(logn) canonical subsets; these are

the sets P(ν) of the nodes ν that are the roots of the selected subtrees. We are

not interested in all the points in such a canonical subset P(ν), but only want to

report the ones whose y-coordinate lies in the interval [y : y′]. This is another

1-dimensional query, which we can solve, provided we have a binary search tree

on the y-coordinate of the points in P(ν) available. This leads to the following

data structure for rectangular range queries on a set P of n points in the plane.

The main tree is a balanced binary search tree T built on the x-coordinate of

the points in P.

For any internal or leaf node ν in T, the canonical subset P(ν) is stored in

a balanced binary search tree Tassoc(ν) on the y-coordinate of the points.

The node ν stores a pointer to the root of Tassoc(ν), which is called the

associated structure of ν .

This data structure is called a range tree. Figure 5.6 shows the structure of a

range tree. Data structures where nodes have pointers to associated structures

are often called multi-level data structures. The main tree T is then called

the first-level tree, and the associated structures are second-level trees. Multi-

level data structures play an important role in computational geometry; more

examples can be found in Chapters 10 and 16.

A range tree can be constructed with the following recursive algorithm, which

receives as input the set P := {p1, ..., pn} of points sorted on x-coordinate and106

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree

on y-coordinates

binary search tree on

x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,

we assume that no two points have the same x- or y-coordinate. We shall get rid

of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)

Input. A set P of points in the plane.

Output. The root of a 2-dimensional range tree.

1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not

just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point

3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .

4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,

and the other subset Pright contains the points with x-coordinate

larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)

6. νright ← BUILD2DRANGETREE(Pright)

7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure

of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the

y-coordinate of the points but the points themselves. This is important because,

when searching the associated structures, we need to report the points and not

just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the

path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107

Chapter 5
ORTHOGONAL RANGE SEARCHING

the point p is stored in exactly one associated structure. Because 1-dimensional

range trees use linear storage it follows that the associated structures of all nodes

at any depth of T together use O(n) storage. The depth of T is O(logn). Hence,

the total amount of storage required is bounded by O(n logn).

p

p

p

p

Algorithm BUILD2DRANGETREE as it is described will not result in the

optimal construction time of O(n logn). To obtain this we have to be a bit

careful. Constructing a binary search tree on an unsorted set of n keys takes

O(n logn) time. This means that constructing the associated structure in line 1

would take O(n logn) time. But we can do better if the points in Py are presorted

on y-coordinate; then the binary search tree can be constructed bottom-up in

linear time. During the construction algorithm we therefore maintain the set of

points in two lists, one sorted on x-coordinate and one sorted on y-coordinate.

This way the time we spend at a node in the main tree T is linear in the size of

its canonical subset. This implies that the total construction time is the same as

the amount of storage, namely O(n logn). Since the presorting takes O(n logn)
time as well, the total construction time is again O(n logn).

The query algorithm first selects O(logn) canonical subsets that together contain

the points whose x-coordinate lie in the range [x : x′]. This can be done with

the 1-dimensional query algorithm. Of those subsets, we then report the points

whose y-coordinate lie in the range [y : y′]. For this we also use the 1-dimensional

query algorithm; this time it is applied to the associated structures that store the

selected canonical subsets. Thus the query algorithm is virtually the same as

the 1-dimensional query algorithm 1DRANGEQUERY; the only difference is

that calls to REPORTSUBTREE are replaced by calls to 1DRANGEQUERY.

Algorithm 2DRANGEQUERY(T, [x : x′]× [y : y′])
Input. A 2-dimensional range tree T and a range [x : x′]× [y : y′].
Output. All points in T that lie in the range.

1. νsplit ←FINDSPLITNODE(T,x,x′)
2. if νsplit is a leaf

3. then Check if the point stored at νsplit must be reported.

4. else (∗ Follow the path to x and call 1DRANGEQUERY on the subtrees

right of the path. ∗)

5. ν ← lc(νsplit)
6. while ν is not a leaf

7. do if x � xν
8. then 1DRANGEQUERY(Tassoc(rc(ν)), [y : y′])
9. ν ← lc(ν)
10. else ν ← rc(ν)
11. Check if the point stored at ν must be reported.

12. Similarly, follow the path from rc(νsplit) to x′, call 1DRANGE-

QUERY with the range [y : y′] on the associated structures of sub-

trees left of the path, and check if the point stored at the leaf where

the path ends must be reported.
108

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where

the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2

states that the time we spend in this recursive call is O(logn+ kν), where kν is

the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice

that the sum ∑ν kν equals k, the total number of reported points. Furthermore,

the search paths of x and x′ in the main tree T have length O(logn). Hence,

∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range

trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses

O(n logn) storage and can be constructed in O(n logn) time. By querying this

range tree one can report the points in P that lie in a rectangular query range in

O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a

technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-

dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced

binary search tree on the first coordinate of the points. The canonical subset

P(ν) of a node ν in this first-level tree, the main tree, consists of the points

stored in the leaves of the subtree rooted at ν . For each node ν we construct

an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1

coordinates. This (d −1)-dimensional range tree is constructed recursively in

the same way: it is a balanced binary search tree on the second coordinate of the

points, in which each node has a pointer to a (d −2)-dimensional range tree of

the points in its subtree, restricted to the last (d −2) coordinates. The recursion

stops when we are left with points restricted to their last coordinate; these are

stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use

the first-level tree to locate O(logn) nodes whose canonical subsets together

contain all the points whose first coordinates are in the correct range. These

canonical subsets are queried further by performing a range query on the cor-

responding second-level structures. In each second-level structure we select 109

Chapter 5
ORTHOGONAL RANGE SEARCHING

O(logn) canonical subsets. This means there are O(log2 n) canonical subsets

in the second-level structures in total. Together, they contain all points whose

first and second coordinate lie in the correct ranges. The third-level structures

storing these canonical subsets are then queried with the range for the third

coordinate, and so on, until we reach the 1-dimensional trees. In these trees we

find the points whose last coordinate lies in the correct range and report them.

This approach leads to the following result.

Theorem 5.9 Let P be a set of n points in d-dimensional space, where d � 2.

A range tree for P uses O(n logd−1 n) storage and it can be constructed in

O(n logd−1 n) time. One can report the points in P that lie in a rectangular query

range in O(logd n+ k) time, where k is the number of reported points.

Proof. Let Td(n) denote the construction time for a range tree on a set of n points

in d-dimensional space. By Theorem 5.8 we know that T2(n) = O(n logn). The

construction of a d-dimensional range tree consists of building a balanced binary

search tree, which takes time O(n logn), and the construction of associated

structures. At the nodes at any depth of the first-level tree, each point is stored

in exactly one associated structure. The time required to build all associated

structures of the nodes at some depth is O(Td−1(n)), the time required to build

the associated structure of the root. This follows because the building time is at

least linear. Hence, the total construction time satisfies

Td(n) = O(n logn)+O(logn) ·Td−1(n).

Since T2(n) = O(n logn), this recurrence solves to O(n logd−1 n). The bound

on the amount of storage follows in the same way.

Let Qd(n) denote the time spent in querying a d-dimensional range tree on

n points, not counting the time to report points. Querying the d-dimensional

range tree involves searching in a first-level tree, which takes time O(logn), and

querying a logarithmic number of (d −1)-dimensional range trees. Hence,

Qd(n) = O(logn)+O(logn) ·Qd−1(n),

where Q2(n) = O(log2 n). This recurrence easily solves to Qd(n) = O(logd n).
We still have to add the time needed to report points, which is bounded by O(k).
The bound on the query time follows.

As in the 2-dimensional case, the query time can be improved by a logarith-

mic factor—see Section 5.6.

5.5 General Sets of Points

Until now we imposed the restriction that no two points have equal x- or y-

coordinate, which is highly unrealistic. Fortunately, this is easy to remedy. The

crucial observation is that we never assumed the coordinate values to be real

numbers. We only need that they come from a totally ordered universe, so that110

Section 5.6*
FRACTIONAL CASCADING

we can compare any two coordinates and compute medians. Therefore we can

use the trick described next.

We replace the coordinates, which are real numbers, by elements of the so-called

composite-number space. The elements of this space are pairs of reals. The

composite number of two reals a and b is denoted by (a|b). We define a total

order on the composite-number space by using a lexicographic order. So, for

two composite numbers (a|b) and (a′|b′), we have

(a|b) < (a′|b′) ⇔ a < a′ or (a = a′ and b < b′).

Now assume we are given a set P of n points in the plane. The points are

distinct, but many points can have the same x- or y-coordinate. We replace each

point p := (px, py) by a new point p̂ := ((px|py),(py|px)) that has composite

numbers as coordinate values. This way we obtain a new set P̂ of n points.

The first coordinate of any two points in P̂ are distinct; the same holds true for

the second coordinate. Using the order defined above one can now construct

kd-trees and 2-dimensional range trees for P̂.

Now suppose we want to report the points of P that lie in a range R :=
[x : x′]×[y : y′]. To this end we must query the tree we have constructed for P̂.

This means that we must also transform the query range to our new composite

space. The transformed range R̂ is defined as follows:

R̂ := [(x|−∞) : (x′|+∞)]× [(y|−∞) : (y′|+∞)].

It remains to prove that our approach is correct, that is, that the points of P̂ that

we report when we query with R̂ correspond exactly to the points of P that lie in

R.

Lemma 5.10 Let p be a point and R a rectangular range. Then

p ∈ R ⇔ p̂ ∈ R̂.

Proof. Let R := [x : x′]× [y : y′] and let p := (px, py). By definition, p lies in R
if and only if x � px � x′ and y � py � y′. This is easily seen to hold if and only

if (x|−∞) � (px|py) � (x′|+∞) and (y|−∞) � (py|px) � (y′|+∞), that is, if

and only if p̂ lies in R̂.

We can conclude that our approach is indeed correct: we will get the correct

answer to a query. Observe that there is no need to actually store the transformed

points: we can just store the original points, provided that we do comparisons

between two x-coordinates or two y-coordinates in the composite space.

The approach of using composite numbers can also be used in higher dimen-

sions.

5.6* Fractional Cascading

In Section 5.3 we described a data structure for rectangular range queries in the

plane, the range tree, whose query time is O(log2 n + k). (Here n is the total 111

Chapter 5
ORTHOGONAL RANGE SEARCHING

number of points stored in the data structure, and k is the number of reported

points.) In this section we describe a technique, called fractional cascading, to

reduce the query time to O(logn+ k).

Let’s briefly recall how a range tree works. A range tree for a set P of points

in the plane is a two-level data structure. The main tree is a binary search

tree on the x-coordinate of the points. Each node ν in the main tree has an

associated structure Tassoc(ν), which is a binary search tree on the y-coordinate

of the points in P(ν), the canonical subset of ν . A query with a rectangular

range [x : x′]× [y : y′] is performed as follows: First, a collection of O(logn)
nodes in the main tree is identified whose canonical subsets together contain the

points with x-coordinate in the range [x : x′]. Second, the associated structures of

these nodes are queried with the range [y : y′]. Querying an associated structure

Tassoc(ν) is a 1-dimensional range query, so it takes O(logn+ kν) time, where

kν is the number of reported points. Hence, the total query time is O(log2 n+k).
If we could perform the searches in the associated structures in O(1+ kν)

time, then the total query time would reduce to O(logn+ k). But how can we

do this? In general, it is not possible to answer a 1-dimensional range query in

O(1+ k) time, with k the number of answers. What saves us is that we have to

do many 1-dimensional searches with the same range, and that we can use the

result of one search to speed up other searches.

We first illustrate the idea of fractional cascading with a simple example. Let S1

and S2 be two sets of objects, where each object has a key that is a real number.

These sets are stored in sorted order in arrays A1 and A2. Suppose we want to

report all objects in S1 and in S2 whose keys lie in a query interval [y : y′]. We

can do this as follows: we do a binary search with y in A1 to find the smallest

key larger than or equal to y. From there we walk through the array to the right,

reporting the objects we pass, until a key larger than y′ is encountered. The

objects from S2 can be reported in a similar fashion. If the total number of

reported objects is k, then the query time will be O(k) plus the time for two

binary searches, one in A1 and one in A2. If, however, the keys of the objects in

S2 are a subset of the keys of the objects in S1, then we can avoid the second

binary search as follows. We add pointers from the entries in A1 to the entries

in A2: if A1[i] stores an object with key yi, then we store a pointer to the entry

in A2 with the smallest key larger than or equal to yi. If there is no such key

then the pointer from A1[i] is nil. Figure 5.7 illustrates this. (Only the keys are

shown in this figure, not the corresponding objects.)

How can we use this structure to report the objects in S1 and S2 whose keys

are in a query interval [y : y′]? Reporting the objects in S1 is still done as before:

do a binary search with y in A1, and walk through A1 to the right until a key

larger than y′ is encountered. To report the points from S2 we proceed as follows.

Let the search for y in A1 end at A[i]. Hence, the key of A[i] is the smallest one

in S1 that is larger than or equal to y. Since the keys from S2 form a subset of

the keys from S1, this means that the pointer from A[i] must point to the smallest

key from S2 larger than or equal to y. Hence, we can follow this pointer, and

from there start to walk to the right through A2. This way the binary search in112

Section 5.6*
FRACTIONAL CASCADING

A1

A2

3 10 19 23 30 37 59 62 70 80 100 105

10 19 30 62 70 80 100

Figure 5.7
Speeding up the search by adding

pointers

A2 is avoided, and reporting the objects from S2 takes only O(1+ k) time, with

k the number of reported answers.

Figure 5.7 shows an example of a query. We query with the range [20 : 65].
First we use binary search in A1 to find 23, the smallest key larger than or equal

to 20. From there we walk to the right until we encounter a key larger than

65. The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into A2. We get to the key 30, which is the

smallest one larger than or equal to 20 in A2. From there we also walk to the

right until we reach a key larger than 65, and report the objects from S2 whose

keys are in the range.

Now let’s return to range trees. The crucial observation here is that the canonical

subsets P(lc(ν)) and P(rc(ν)) both are subsets of P(ν). As a result we can

use the same idea to speed up the query time. The details are slightly more

complicated, because we now have two subsets of P(ν) to which we need

fast access rather than only one. Let T be a range tree on a set P of n points

in the plane. Each canonical subset P(ν) is stored in an associated structure.

But instead of using a binary search tree as associated structure, as we did

in Section 5.3, we now store it in an array A(ν). The array is sorted on the

y-coordinate of the points. Furthermore, each entry in an array A(ν) stores two

pointers: a pointer into A(lc(ν)) and a pointer into A(rc(ν)). More precisely,

we add the following pointers. Suppose that A(ν)[i] stores a point p. Then we

store a pointer from A(ν)[i] to the entry of A(lc(ν)) such that the y-coordinate of

the point p′ stored there is the smallest one larger than or equal to py. As noted

above, P(lc(ν)) is a subset of P(ν). Hence, if p has the smallest y-coordinate

larger than or equal to some value y of any point in P(ν), then p′ has the smallest

y-coordinate larger than or equal to y of any point in P(lc(ν)). The pointer

into A(rc(ν)) is defined in the same way: it points to the entry such that the

y-coordinate of the point stored there is the smallest one that is larger than or

equal to py.

This modified version of the range tree is called a layered range tree;

Figures 5.8 and 5.9 show an example. (The positions in which the arrays are

drawn corresponds to the positions of the nodes in the tree they are associated

with: the topmost array is associated with the root, the left array below it is

associated with the left child of the root, and so on. Not all pointers are shown

in the figure.)

Let’s see how to answer a query with a range [x : x′]× [y : y′] in a layered 113

Chapter 5
ORTHOGONAL RANGE SEARCHING

Figure 5.8
The main tree of a layered range tree:

the leaves show only the x-coordinates;

the points stored are given below

(2,19)
(5,80)

(7,10)
(8,37)

(12,3)
(15,99)

(17,62) (21,49)
(33,30)

(41,95)
(52,23)

(58,59)
(67,89)

(93,70)

2

5 7 8 12 15

17

21 33 41 52

58

672 93

67584121127

5

8

15

17

52

33

Figure 5.9
The arrays associated with the nodes in

the main tree, with the y-coordinate of

the points of the canonical subsets in

sorted order (not all pointers are shown)

3 99

10 19 37 80

30 49

80 3 99 3049

9962

6210 37

10 3719

8019

99623719103 80 30 4923 59 70 89 95

30 49233 95 59 70 89

23 95 59 70 89

95 23 89 70

3 10 19 23 30 37 49 59 62 70 80 89 95 99

114

Section 5.7
NOTES AND COMMENTS

range tree. As before we search with x and x′ in the main tree T to determine

O(logn) nodes whose canonical subsets together contain the points with x-

coordinate in the range [x : x′]. These nodes are found as follows. Let νsplit be

the node where the two search paths split. The nodes that we are looking for

are the ones below νsplit that are the right child of a node on the search path to x
where the path goes left, or the left child of a node on the search path to x′ where

the path goes right. At νsplit we find the entry in A(νsplit) whose y-coordinate is

the smallest one larger than or equal to y. This can be done in O(logn) time by

binary search. While we search further with x and x′ in the main tree, we keep

track of the entry in the associated arrays whose y-coordinate is the smallest one

larger than or equal to y. They can be maintained in constant time by following

the pointers stored in the arrays. Now let ν be one of the O(logn) nodes we

selected. We must report the points stored in A(ν) whose y-coordinate is in

the range [y : y′]. For this it suffices to be able to find the point with smallest

y-coordinate larger than or equal to y; from there we can just walk through the

array, reporting points as long as their y-coordinate is less than or equal to y′.
This point can be found in constant time, because parent(ν) is on the search

path, and we kept track of the points with smallest y-coordinate larger than or

equal to y in the arrays on the search path. Hence, we can report the points of

A(ν) whose y-coordinate is in the range [y : y′] in O(1+ kν) time, where kν is

the number of reported answers at node ν . The total query time now becomes

O(logn+ k).

Fractional cascading also improves the query time of higher-dimensional range

trees by a logarithmic factor. Recall that a d-dimensional range query was

solved by first selecting the points whose d-th coordinate is in the correct range

in O(logn) canonical subsets, and then solving a (d − 1)-dimensional query

on these subsets. The (d − 1)-dimensional query is solved recursively in the

same way. This continues until we arrive at a 2-dimensional query, which can

be solved as described above. This leads to the following theorem.

Theorem 5.11 Let P be a set of n points in d-dimensional space, with d � 2. A

layered range tree for P uses O(n logd−1 n) storage and it can be constructed in

O(n logd−1 n) time. With this range tree one can report the points in P that lie

in a rectangular query range in O(logd−1 n+ k) time, where k is the number of

reported points.

5.7 Notes and Comments

In the 1970s—the early days of computational geometry—orthogonal range

searching was one of the most important problems in the field, and many people

worked on it. This resulted in a large number of results, of which we discuss a

few below.

One of the first data structures for orthogonal range searching was the

quadtree, which is discussed in Chapter 14 in the context of meshing. Un-

fortunately, the worst-case behavior of quadtrees is quite bad. Kd-trees, de- 115

Chapter 5
ORTHOGONAL RANGE SEARCHING

scribed first by Bentley [44] in 1975, are an improvement over quadtrees.

Samet’s books [333, 334] discuss quadtrees, kd-trees, and their applications

in great detail. A few years later, the range tree was discovered indepen-

dently by several people [46, 251, 261, 387]. The improvement in query time

to O(logn + k) by fractional cascading was described by Lueker [261] and

Willard [386]. Fractional cascading applies in fact not only to range trees, but

in many situations where one does many searches with the same key. Chazelle

and Guibas [105, 106] discuss this technique in its full generality. Fractional

cascading can also be used in a dynamic setting [275]. The most efficient

data structure for 2-dimensional range queries is a modified version of the

layered range tree, described by Chazelle [87]; he succeeded in improving

the storage to O(n logn/ log logn) while keeping the query time O(logn + k).
Chazelle [90, 91] also proved that this is optimal. If the query range is un-

bounded to one side, for instance when it is of the form [x : x′]× [y : +∞],
then one can achieve O(logn) query time with only linear space, using a pri-

ority search tree—see Chapter 10. In higher dimensions the best result for

orthogonal range searching is also due to Chazelle [90]: he gave a structure for

d-dimensional queries with O(n(logn/ log logn)d−1) storage and polylogarith-

mic query time. Again, this result is optimal. Trade-offs between storage and

query time are also possible [338, 391].

The lower-bound result is only valid under certain models of computation.

This allows for improved results in specific cases. In particular, Overmars [300]

describes more efficient data structures for range searching when the points lie

on a U ×U grid, yielding query time bounds of O(log logU +k) or O(
√

U + k),
depending on the preprocessing time allowed. The results use data structures

described earlier by Willard [389, 390]. When compared with the general case,

better time bounds can be obtained for many problems in computational ge-

ometry once the coordinates of the objects are restricted to lie on grid points.

Examples are the nearest neighbor searching problem [224, 225], point loca-

tion [287], and line segment intersection [226].

In databases, range queries are considered the most general of three basic types

of multi-dimensional queries. The two other types are exact match queries
and partial match queries. Exact match queries are simply queries of the

type: Is the object (point) with attribute values (coordinates) such and such

present in the database? The obvious data structure for exact match queries

is the balanced binary tree that uses, for instance, a lexicographical order on

the coordinates. With this structure exact match queries can be answered in

O(logn) time. If the dimension—the number of attributes—increases, it can

be useful to express the efficiency of queries not only in terms of n, but also

in the dimension d. If a binary tree is used for exact match queries, the query

time is O(d logn) because it takes O(d) time to compare two points. This can

easily be reduced to O(d + logn) time, which is optimal. A partial match query

specifies only a value for a subset of the coordinates and asks for all points with

the specified coordinate values. In the plane, for instance, a partial match query

specifies only an x-coordinate, or only a y-coordinate. Interpreted geometrically,

a partial match query in the plane asks for the points on a horizontal line, or on116

Section 5.8
EXERCISES

a vertical line. With a d-dimensional kd-tree, a partial match query specifying s
coordinates (with s < d) can be answered in O(n1−s/d + k) time, where k is the

number of reported points [44].

In many applications the data that we are given are not a set of points, but a

set of certain objects such as polygons. If we want to report the objects that

are completely contained in a query range [x : x′]× [y : y′], then it is possible

to transform the query to a query on point data in higher dimensions—see

Exercise 5.13. Often one also wants to find the objects that are only partially

in the range. This specific problem is called the windowing problem and is

discussed in Chapter 10.

Other variants of the range searching problem are obtained by allowing

other types of query ranges, such as circles or triangles. Many of these variants

can be solved using so-called partition trees, which are discussed in Chapter 16.

5.8 Exercises

5.1 In the proof of the query time of the kd-tree we found the following

recurrence:

Q(n) =

{
O(1), if n = 1,

2+2Q(n/4), if n > 1.

Prove that this recurrence solves to Q(n) = O(
√

n). Also show that

Ω(
√

n) is a lower bound for querying in a kd-tree by defining a set of n
points and a query rectangle appropriately.

5.2 Describe algorithms to insert and delete points from a kd-tree. In your

algorithm you do not need to take care of rebalancing the structure.

5.3 In Section 5.2 it was indicated that kd-trees can also be used to store

sets of points in higher-dimensional space. Let P be a set of n points

in d-dimensional space. In parts a. and b. you may consider d to be a

constant.

a. Describe an algorithm to construct a d-dimensional kd-tree for the

points in P. Prove that the tree uses linear storage and that your

algorithm takes O(n logn) time.

b. Describe the query algorithm for performing a d-dimensional range

query. Prove that the query time is bounded by O(n1−1/d + k).
c. Show that the dependence on d in the amount of storage is linear, that

is, show that the amount of storage is O(dn) if we do not consider d to

be a constant. Give the dependence on d of the construction time and

the query time as well.

5.4 Kd-trees can be used for partial match queries. A 2-dimensional partial

match query specifies a value for one of the coordinates and asks for

all points that have that value for the specified coordinate. In higher 117

Chapter 5
ORTHOGONAL RANGE SEARCHING

dimensions we specify values for a subset of the coordinates. Here we

allow multiple points to have equal values for coordinates.

a. Show that 2-dimensional kd-trees can answer partial match queries in

O(
√

n+ k) time, where k is the number of reported answers.

b. Explain how to use a 2-dimensional range tree to answer partial match

queries. What is the resulting query time?

c. Describe a data structure that uses linear storage and solves 2-dimen-

sional partial match queries in O(logn+ k) time.

d. Show that with a d-dimensional kd-tree we can solve a d-dimensional

partial match query in O(n1−s/d + k) time, where s (with s < d) is the

number of specified coordinates.

e. Describe a data structure that uses linear storage and that can answer

d-dimensional partial match queries in O(logn+ k) time. Hint: Use a

structure whose dependence on d in the amount of storage is exponen-

tial (more precisely, a structure that uses O(d2dn) storage).

5.5 Algorithm SEARCHKDTREE can also be used when querying with other

ranges than rectangles. For example, a query is answered correctly if the

range is a triangle.

a. Show that the query time for range queries with triangles is linear in

the worst case, even if no answers are reported at all. Hint: Choose all

points to be stored in the kd-tree on the line y = x.

b. Suppose that a data structure is needed that can answer triangular range

queries, but only for triangles whose edges are horizontal, vertical,

or have slope +1 or −1. Develop a linear size data structure that

answers such range queries in O(n3/4 +k) time, where k is the number

of points reported. Hint: Choose 4 coordinate axes in the plane and

use a 4-dimensional kd-tree.

c. Improve the query time to O(n2/3 + k). Hint: Solve Exercise 5.4 first.

5.6 Describe algorithms to insert and delete points from a range tree. You

don’t have to take care of rebalancing the structure.

5.7 In the proof of Lemma 5.7 we made a rather rough estimate of the query

time in the associated structures by stating that this was bounded by

O(logn). In reality the query time is dependent on the actual number of

points in the associated structure. Let nν denote the number of points in

the canonical subset P(ν). Then the total time spent is

∑
ν

Θ(lognν + kν),

where the summation is over all nodes in the main tree T that are vis-

ited. Show that this bound is still Θ(log2 n + k). (That is, our more

careful analysis only improves the constant in the bound, not the order of

magnitude.)

5.8 Theorem 5.8 showed that a range tree on a set of n points in the plane

requires O(n logn) storage. One could bring down the storage require-118

Section 5.8
EXERCISES

ments by storing associated structures only with a subset of the nodes in

the main tree.

a. Suppose that only the nodes with depth 0, 2, 4, 6, . . . have an associated

structure. Show how the query algorithm can be adapted to answer

queries correctly.

b. Analyze the storage requirements and query time of such a data struc-

ture.

c. Suppose that only the nodes with depth 0, � 1
j logn, � 2

j logn, . . . have

an associated structure, where j � 2 is a constant. Analyze the storage

requirements and query time of this data structure. Express the bounds

in n and j.

5.9 One can use the data structures described in this chapter to determine

whether a particular point (a,b) is in a given set by performing a range

query with range [a : a]× [b : b].

a. Prove that performing such a range query on a kd-tree takes time

O(logn).
b. What is the time bound for such a query on a range tree? Prove your

answer.

5.10 In some applications one is interested only in the number of points that

lie in a range rather than in reporting all of them. Such queries are often

referred to as range counting queries. In this case one would like to avoid

having an additive term of O(k) in the query time.

a. Describe how a 1-dimensional range tree can be adapted such that a

range counting query can be performed in O(logn) time. Prove the

query time bound.

b. Using the solution to the 1-dimensional problem, describe how d-

dimensional range counting queries can be answered in O(logd n)
time. Prove the query time.

c.* Describe how fractional cascading can be used to improve the running

time with a factor of O(logn) for 2- and higher-dimensional range

counting queries.

5.11 Let S1 be a set of n disjoint horizontal line segments and let S2 be a set

of m disjoint vertical line segments. Give a plane-sweep algorithm that

counts in O((n+m) log(n+m)) time how many intersections there are

in S1 ∪S2.

5.12 In Section 5.5 it was shown that one can treat sets of points in the plane

that contain equal coordinate values using composite numbers. Extend

this notion to points in d-dimensional space. To this end you should define

the composite number of d numbers and define an appropriate order on

them. Next, show how to transform the point p := (p1, . . . , pd) and the

range R := [r1 : r′1]×·· ·× [rd : r′d] using this order; the transformation

should be such that p ∈ R if and only if the transformed point lies in the

transformed range. 119

Chapter 5
ORTHOGONAL RANGE SEARCHING

5.13 In many application one wants to do range searching among objects other

than points.

a. Let S be a set of n axis-parallel rectangles in the plane. We want to

be able to report all rectangles in S that are completely contained in

a query rectangle [x : x′]× [y : y′]. Describe a data structure for this

problem that uses O(n log3 n) storage and has O(log4 n + k) query

time, where k is the number of reported answers. Hint: Transform the

problem to an orthogonal range searching problem in some higher-

dimensional space.

b. Let P consist of a set of n polygons in the plane. Again describe

a data structure that uses O(n log3 n) storage and has O(log4 n + k)
query time to report all polygons completely contained in the query

rectangle, where k is the number of reported answers.

c.* Improve the query time of your solutions (both for a. and b.) to

O(log3 n+ k).

5.14* Prove the O(n logd−1 n) bounds on the storage and construction time in

Theorem 5.11.

120

