1 Introduction

- suffix tree (ST) even if we are careful and try to use as little memory as possible, it takes about 10–20B/character
- suffix array (SA) needs 1 int/character; for texts up to 4 billion chars, we can use a 32-bit ints, which is $4B$ /character (if we use the LCP array – another $12B$ /character) + the text itself
- take for example the human genome, which is a string of about 3 billion chars from the alphabet A, C, G, T
- the string itself therefore takes about 3GB (if we use 1B/character), or 750MB if we use packed representation with 2bits/character
- the suffix tree will occupy 30–60GB or more and the suffix array about 12GB (+the string itself $+0.75GB$
- and that's just the memory of the resulting structure, where we don't count the memory used temporarily during construction
- when processing larger inputs, we will be limited by the RAM size
- in this lecture we will show how to achieve an even more memory-efficient solution
- we will even show that we can compress(!!!) the input text in such a way that we still allow fast search
- the resulting structure, FM-index, is based on Burrows-Wheeler transformations and rotations of the string T

2 Burrows-Wheeler transformation

- consider all rotations of the string T and sort them lexicographically
- i.e., consider a BW $n \times n$ matrix M
- T^{bwt} is a string consisting of the last symbol in each row the last column of the matrix
- sorting all rotations is similar to sorting all suffixes, so it is not surprising that that there is a simple relationship between T^{bwt} and the suffix field:
	- $-T^{\text{bwt}}[i] = T[SA[i] 1]$ (where $T[-1] = $$)
- it follows that we can calculate T^{bwt} in linear time

2.1 Application of BWT in compression

- example: we find the substring "ATTLE" in English text; what do you think is the previous letter?
	- most likely B (from the words battle, embattle) or C (cattle)
	- but there are a few other options: R (prattle), T (tattle)
- if we sort T rotations, all rotations starting with "ATTLE" will be consecutive, so in the last column, there will be a lot of B's and C's and maybe a few R's, T's in this interval;
- symbols with the same context are brought together using BWT
- \bullet in general, T^{bwt} will contain intervals with repeated symbols and more generally longer intervals, where there are only a few different symbols – such a string is much easier to compress
- for example, the bzip2 algorithm consists of several steps:
	- 1. BWT we get repeated symbols and long sections with a small number of symbols
	- 2. MTF (move-to-front: during encoding, maintain a list of symbols; replace the i-th symbol by number i and at the same time move it to the beginning of the list) – this way, if some symbol repeats often, it tends to stay at the beginning of the list and is encoded as small number; e.g., a run of a single repeated character will be transformed into a run of zeros; and

a long section containing only d different symbols will be transformed into a long section of small numbers $0.d - 1$

- 3. RLE (run-length encoding) replace a substring ccc...c, a run of symbol c repeated $k \times$ by encoding it as a pair (k, c)
- 4. finally use the Huffman code to encode individual symbols

2.2 Reverse transformation $T^{\text{bwt}} \to T$

- assume for a moment that all characters in T are different then sorting the rotations is easy, because it is enough to compare the first symbol
- if we sort the characters $L = T^{\text{bwt}}$, we get the first column F
- note that if we have the first and the last column, we can easily reconstruct T , namely, L_i is the letter that is located before F_i in T
- simply start from the end with \$, find the row where $F_i = $$; the last character is $c = L_i$; next, find the row where $F_j = c$ and that means the previous character was $c = L_j$ – we continue this way until the beginning of the string
- now let's think about the general case: if the character c is repeated in T , which position in L belongs to which position in F ?
- it is not difficult to see that the *i*-th occurrence of c in L corresponds to the *i*-th occurrence of c in F :
	- if cx is before cy, then $x \leq y$ and therefore xc is before yc
	- in other words, all rows starting with c are sorted by the rest of the string and so are rows with c at the end
- for efficient reverse transformation, we need for a given L_i quickly find the corresponding row F_j
- this is the so-called LF-mapping; it can be easily calculated already during the sorting of L into F – however, we would additionally like to represent the LF-mapping using a small memory
- for this, it is sufficient to know the number of c's in $L[0..i]$ for each character c and for any i (this is the classic rank_c (L, i) problem) and for a given c, where does the section c's start in F

3 FM-index

3.1 Search

- in the previous section, we described the use of BWT in compression and the inverse transformation; but can we search in T^{bwt} efficiently?
- since BWT is closely related to SA, we could try binary search just like in SA; however, in the resulting FM-index we will not directly remember the whole T and answering what is the j-th character in the ith row will be much slower than in SA – thus the entire binary search would be much slower
- however, there is a better way, using the LF-mapping
- the search for $P = p_0 \dots p_{m-1}$ will proceed backwards, starting from the last character; we will successively search for suffixes $P_{i...} = p_i p_{i+1} \dots p_{m-1}$ for $i = m-1, \dots, 0$
- more precisely: since the rows of the imaginary matrix M are sorted lexicographically, rows starting with word w form an interval; so, let $[s_i, e_i)$ be the interval of rows beginning with the suffix $P_{i...}$
- if we know $[s_{i+1}, e_{i+1}),$ how do we find $[s_i, e_i)$?
- we know the interval of rows that start with P_{i+1} ...; some of these rows end with p_i these rows correspond to occurrences of $P_{i+1...}$ preceded with p_i
- although rows starting with $P_{i+1...}$ and ending with p_i may not form one continuous interval, their rotations by 1 character left are rows starting with $P_{i...} = p_i P_{i+1...}$ and they do form an interval of rows
- we know that $[s_i, e_i)$ will be a subinterval of rows that start with p_i $([F[p_i], F[p_i+1]))$ + recall from the previous section that if $cx < cy$, then $x < y$ and therefore $xc < yc$, i.e. all rows starting with a given character are in the same order as all rows ending with that character; therefore we can split the interval $[F[p_i], F[p_i + 1])$ into 3 parts:
	- rows $[F[p_i], s_i)$ are the rows that start with $p_i x$ where $x < P_{i+1...}$,
	- rows $[s_i, e_i)$ start with $P_{i...}$ (we are looking for this interval), and
	- rows $[e_i, F[p_i+1])$ are rows that start with $p_i y$, where $y > P_{i+1...}$
- it is enough to find out $\text{rank}_{p_i}(L, s_{i+1})$ how many times the character p_i occurs before s_{i+1} , i.e. number of occurrences of $p_i x$, where $x < P_{i+1...}$, and $\text{rank}_{p_i}(L, e_{i+1})$ – number of occurrences of $p_i x$ for $x \le P_{i+1...} (|x| = m - i - 1)$
- \bullet [s_{m−1}, e_{m−1}) ← [F[p_{m−1}], F[p_{m−1} + 1])
- $[s_i, e_i) \leftarrow [F[p_i] + \text{rank}_{p_i}(L, s_{i+1} 1), F[p_i] + \text{rank}_{p_i}(L, e_{i+1}))$
- at the end we get the interval $[s_0, e_0)$ rows starting with P
- that's the idea; now let's think about some "details":
- given a row in M how do we find the position in the text T ?
- this was the information stored in the suffix array $SA[k]$ = position of the k-th smallest suffix/rotation in T – however, we don't want to remember the entire suffix array (that takes too much space)
- solution: we will remember a subset of SA for example, only $SA[k]$ values divisible by s
- if we want to find out the value of $SA[k]$, which is not stored, we will use the LF-mapping to move to the previous rotations until after at most $\lt s$ steps, we encounter a value which is stored in SA (the result then is $SA[k'] + #$ steps back we took)
- how do we represent $L = T^{\text{bwt}}$ so that we can quickly find $\text{rank}_c(L, i)$?
- the easiest way is to precompute values $rank_c(L, i)$ for every character c, but only for positions which are multiples of some constant b; to answer the queries, we do 1 lookup $+$ count the rest linearly; so again, we are doing a time/space trade-off; for small alphabets and large enough b , this is fine, we will show better solutions in the following lectures – this is a large topic
- can we recover the *i*-th character of T, or a substring $T_{i...j}$ even without remembering T? we showed how to recover T from T^{bwt} in $O(n)$; however, can we recover random small parts without doing the whole inverse BWT?
- yes: we just need to be able to quickly find for a position in T what is the corresponding row in M
- solution: we need to store the sample of SA in such away that we can quickly answer both $SA[i] = ?$ and $SA[?] = i$
- when we want to extract $T_{i...j}$, we first "round" j up to the nearest value divisible by s, we find the corresponding row in M and using the LF-mapping, we gradually decode T up to the *i*th position

4 Summary

- the resulting structure will consist of:
	- F (first column of M) $|\Sigma|$ integers
	- $-L = T^{\text{bwt}}$ (last column of M) n characters (for now but these can be compressed)
	- data structure for $\text{rank}_c(L, i) n|\Sigma|/b$ integers (for now we will show better solutions)
	- a subset of $SA 2n/s$ integers
- how much memory does it take in practice? take our example with DNA, where $|\Sigma| = 4$; let's choose $s = 64$ and $b = 128$ (i.e., calculating rank or finding a value in a sample of SA still takes constant time, but we may have to scan up to 64–128 values):
	- $|F|=16B$ this is nothing
	- $|L|=750MB$ the original string (use the packed encoding)
	- $|SA|=12GB\times2/64=375MB$,
	- $-$ | rank $|=12GB\times4/128=375MB$

– that's only 1.5GB in total, or $2 \times$ the size of the original string(!)

- \bullet note that, unlike ST and SA, we do not need to remember the original string T (we can reconstruct it from $L = T^{\text{bwt}}$
- so starting with a 30–60GB suffix tree, through 12GB suffix array, we achieved 1.5GB FMindex – that's $20-40\times$ less memory – and we haven't even compressed L yet and we just used a very simple solution for rank
- with compression and other improvements, we can achieve a DS that occupies 30–50% of space of the original string, and we can still support efficient search