
BWT and FM-index
©kuko 26.11.2023

1 Introduction

• suffix tree (ST) – even if we are careful and try to use as little memory as possible, it takes
about 10–20B/character

• suffix array (SA) needs 1 int/character; for texts up to 4 billion chars, we can use a 32-bit ints,
which is 4B/character (if we use the LCP array – another 12B/character) + the text itself

• take for example the human genome, which is a string of about 3 billion chars from the alphabet
A, C, G, T

• the string itself therefore takes about 3GB (if we use 1B/character), or 750MB if we use packed
representation with 2bits/character

• the suffix tree will occupy 30–60GB or more and the suffix array about 12GB (+the string
itself +0.75GB)

• and that’s just the memory of the resulting structure, where we don’t count the memory used
temporarily during construction

• when processing larger inputs, we will be limited by the RAM size
• in this lecture we will show how to achieve an even more memory-efficient solution
• we will even show that we can compress(!!!) the input text in such a way that we still allow
fast search

• the resulting structure, FM-index, is based on Burrows-Wheeler transformations and rotations
of the string T

2 Burrows-Wheeler transformation

• consider all rotations of the string T and sort them lexicographically
• i.e., consider a BW n× n matrix M
• T bwt is a string consisting of the last symbol in each row – the last column of the matrix
• sorting all rotations is similar to sorting all suffixes, so it is not surprising that that there is a
simple relationship between T bwt and the suffix field:
– T bwt[i] = T [SA[i]− 1] (where T [−1] = $)

• it follows that we can calculate T bwt in linear time

2.1 Application of BWT in compression

• example: we find the substring “ATTLE” in English text; what do you think is the previous
letter?
– most likely B (from the words battle, embattle) or C (cattle)
– but there are a few other options: R (prattle), T (tattle)

• if we sort T rotations, all rotations starting with “ATTLE” will be consecutive, so in the last
column, there will be a lot of B’s and C’s and maybe a few R’s, T’s in this interval;

• symbols with the same context are brought together using BWT
• in general, T bwt will contain intervals with repeated symbols and more generally longer inter-
vals, where there are only a few different symbols – such a string is much easier to compress

• for example, the bzip2 algorithm consists of several steps:
– 1. BWT – we get repeated symbols and long sections with a small number of symbols
– 2. MTF (move-to-front: during encoding, maintain a list of symbols; replace the i-th symbol

by number i and at the same time move it to the beginning of the list) – this way, if some
symbol repeats often, it tends to stay at the beginning of the list and is encoded as small
number; e.g., a run of a single repeated character will be transformed into a run of zeros; and

1

a long section containing only d different symbols will be transformed into a long section
of small numbers 0..d− 1

– 3. RLE (run-length encoding) – replace a substring ccc...c, a run of symbol c repeated k×
by encoding it as a pair (k, c)

– 4. finally use the Huffman code to encode individual symbols

2.2 Reverse transformation T bwt → T

• assume for a moment that all characters in T are different – then sorting the rotations is easy,
because it is enough to compare the first symbol

• if we sort the characters L = T bwt, we get the first column F
• note that if we have the first and the last column, we can easily reconstruct T , namely, Li is

the letter that is located before Fi in T
• simply start from the end with $, find the row where Fi = $; the last character is c = Li; next,
find the row where Fj = c and that means the previous character was c = Lj – we continue
this way until the beginning of the string

• now let’s think about the general case: if the character c is repeated in T , which position in L
belongs to which position in F?

• it is not difficult to see that the i-th occurrence of c in L corresponds to the i-th occurrence of
c in F :
– if cx is before cy, then x < y and therefore xc is before yc
– in other words, all rows starting with c are sorted by the rest of the string – and so are

rows with c at the end
• for efficient reverse transformation, we need for a given Li quickly find the corresponding row
Fj

• this is the so-called LF-mapping; it can be easily calculated already during the sorting of L into
F – however, we would additionally like to represent the LF-mapping using a small memory

• for this, it is sufficient to know the number of c’s in L[0..i] for each character c and for any i
(this is the classic rankc(L, i) problem) and for a given c, where does the section c’s start in F

3 FM-index

3.1 Search

• in the previous section, we described the use of BWT in compression and the inverse transfor-
mation; but can we search in T bwt efficiently?

• since BWT is closely related to SA, we could try binary search just like in SA; however, in the
resulting FM-index we will not directly remember the whole T and answering what is the j-th
character in the ith row will be much slower than in SA – thus the entire binary search would
be much slower

• however, there is a better way, using the LF-mapping
• the search for P = p0 . . . pm−1 will proceed backwards, starting from the last character; we will

successively search for suffixes Pi... = pipi+1 . . . pm−1 for i = m− 1, . . . , 0
• more precisely: since the rows of the imaginary matrix M are sorted lexicographically, rows

starting with word w form an interval; so, let [si, ei) be the interval of rows beginning with the
suffix Pi...

• if we know [si+1, ei+1), how do we find [si, ei)?
• we know the interval of rows that start with Pi+1...; some of these rows end with pi – these

rows correspond to occurrences of Pi+1... preceded with pi
• although rows starting with Pi+1... and ending with pi may not form one continuous interval,

their rotations by 1 character left are rows starting with Pi... = piPi+1... and they do form an
interval of rows

2

• we know that [si, ei) will be a subinterval of rows that start with pi ([F [pi], F [pi+1])) + recall
from the previous section that if cx < cy, then x < y and therefore xc < yc, i.e. all rows
starting with a given character are in the same order as all rows ending with that character;
therefore we can split the interval [F [pi], F [pi + 1]) into 3 parts:
– rows [F [pi], si) are the rows that start with pix where x < Pi+1...,
– rows [si, ei) start with Pi... (we are looking for this interval), and
– rows [ei, F [pi + 1]) are rows that start with piy, where y > Pi+1...

• it is enough to find out rankpi(L, si+1) – how many times the character pi occurs before si+1, i.e.
number of occurrences of pix, where x < Pi+1..., and rankpi(L, ei+1) – number of occurrences
of pix for x ≤ Pi+1... (|x| = m− i− 1)

• [sm−1, em−1)← [F [pm−1], F [pm−1 + 1])
• [si, ei)← [F [pi] + rankpi

(L, si+1 − 1), F [pi] + rankpi
(L, ei+1))

• at the end we get the interval [s0, e0) – rows starting with P

• that’s the idea; now let’s think about some “details”:
• given a row in M – how do we find the position in the text T?
• this was the information stored in the suffix array – SA[k] = position of the k-th smallest

suffix/rotation in T – however, we don’t want to remember the entire suffix array (that takes
too much space)

• solution: we will remember a subset of SA – for example, only SA[k] values divisible by s
• if we want to find out the value of SA[k], which is not stored, we will use the LF-mapping to
move to the previous rotations until after at most < s steps, we encounter a value which is
stored in SA (the result then is SA[k′] + #steps back we took)

• how do we represent L = T bwt so that we can quickly find rankc(L, i)?
• the easiest way is to precompute values rankc(L, i) for every character c, but only for positions
which are multiples of some constant b; to answer the queries, we do 1 lookup + count the rest
linearly; so again, we are doing a time/space trade-off; for small alphabets and large enough b,
this is fine, we will show better solutions in the following lectures – this is a large topic

• can we recover the i-th character of T , or a substring Ti...j even without remembering T? we
showed how to recover T from T bwt in O(n); however, can we recover random small parts
without doing the whole inverse BWT?

• yes: we just need to be able to quickly find for a position in T what is the corresponding row
in M

• solution: we need to store the sample of SA in such away that we can quickly answer both
SA[i] =? and SA[?] = i

• when we want to extract Ti...j , we first ”round”j up to the nearest value divisible by s, we find
the corresponding row in M and using the LF-mapping, we gradually decode T up to the ith
position

4 Summary

• the resulting structure will consist of:
– F (first column of M) – |Σ| integers
– L = T bwt (last column of M) – n characters (for now – but these can be compressed)
– data structure for rankc(L, i) – n|Σ|/b integers (for now – we will show better solutions)
– a subset of SA – 2n/s integers

• how much memory does it take in practice? take our example with DNA, where |Σ| = 4; let’s
choose s = 64 and b = 128 (i.e., calculating rank or finding a value in a sample of SA still takes
constant time, but we may have to scan up to 64–128 values):
– |F |=16B – this is nothing
– |L|=750MB – the original string (use the packed encoding)
– |SA|=12GB×2/64=375MB,
– | rank |=12GB×4/128=375MB

3

– that’s only 1.5GB in total, or 2× the size of the original string(!)
• note that, unlike ST and SA, we do not need to remember the original string T (we can

reconstruct it from L = T bwt)
• so starting with a 30–60GB suffix tree, through 12GB suffix array, we achieved 1.5GB FM-
index – that’s 20–40× less memory – and we haven’t even compressed L yet and we just used
a very simple solution for rank

• with compression and other improvements, we can achieve a DS that occupies 30–50% of space
of the original string, and we can still support efficient search

4

