
Homework #2

(3 points) Motivation: In functional languages, we can think of data struc-
tures as directed acyclic graphs (DAGs), where each node (representing a struct)
can contain only O(1) data and O(1) pointers to other nodes. We cannot change
any nodes, we can only create new nodes. How can we implement a double ended
queue a.k.a. deque in such languages?

One way is to represent the deque using two stacks (which are easy to im-
plement). For example, a double ended queue with elements

1, 2, 3, 4, 5, 6, 7, 8, 9

can be represented using 2 stacks:

front : ⊢ 3, 2, 1

rear : ⊢ 4, 5, 6, 7, 8, 9

(⊢ is the bottom of the stack, the top is on the right).
If we want to add/remove an element from the beginning of the queue, we

add/remove it from front, if we want to add/remove an element from the end,
we add/remove it from rear. The only problem is if one of the stacks gets
empty. For example, if we remove elements 1, 2, 3 from the beginning, we get
an empty front:

front : ⊢
rear : ⊢ 4, 5, 6, 7, 8, 9

What if we now want to take the element from the beginning again?

a) One idea is to take all elements from rear and insert them in reverse
order into front. We solve the removal and insertion at the other end
symmetrically. Show that this is not a good implementation and there is
a sequence of O(n) operations (starting from empty deque) which takes
Ω(n2) time.

b) Better idea1 is to maintain the invariant that

• size(front) ≤ 4 size(rear) + 1 and

• size(rear) ≤ 4 size(front) + 1.

If the invariant is violated during any operation, we rearrange the stacks
so that both stacks have the same size (±1 if the number of elements is
odd).

Prove that this algorithm runs in O(1) amortized time for each operation.

1see e.g. Data.Deque library in Haskell, which works exactly like this:
https://hackage.haskell.org/package/dequeue-0.1.12/docs/src/Data-Dequeue.html#check

1

