
Homework #1

(3 points) Consider the special case of finding the shortest path with pos-
itive integer distances in the range [1 . . . C]. Implement Dijkstra’s algorithm
with radix heap (see these resources)

https://kubokovac.eu/ds/mat/radix-heap-en.pdf

http://ssp.impulsetrain.com/radix-heap.html

https://kubokovac.eu/ds/mat/sssp.pdf

and compare it with an implementation using a classic binary heap. Find out,
which algorithm is better, depending on C and depending on the graph density
(number of edges per node δ = M/N). (I find the most interesting the ranges
of say C ∈ [1..1 000 000] and δ around 10, say δ ∈ [3..100].)

If you want, you can start with this code for comparison:

https://kubokovac.eu/ds/src/dijkstra.cpp

where Dijkstra’s algorithm with a binary heap is already implemented (tra-
ditional implementation with decrease_key and lazy implementation adding
copies to the heap) and also with an ad hoc data structure where we maintain
for each distance a bucket of vertices at that distance from the origin.

Submit the source code and the measured data plotted in a graph.
Tips and notes:

� Call the submitted files hw1.cpp and hw1.pdf (text/graphs). After you’re
done with development, go over your program again, clean it up and sim-
plify it. Use an automatic code formatter.

� Don’t leave the homework for the last moment – you’ll regret it; if you
need help, message me.

� Test your program thoroughly – correctness ≫ speed.

� Make enough measurements for each choice of parameters (not just one!)
– preferably, calculate average and standard deviation or display the data
as a box plot.

� Write the code in a low-level programming language – ideally C/C++/Rust,
in the worst case Java/C#/D.

� Don’t forget to turn on optimization (e.g. for gcc, you want the -O3 flag)
– this task is about efficient code, we care about constants.

� I recommend turning on all warnings (e.g. gcc -Wall -Werror -pedantic

and while testing, also -fsanitize=address), so that possible bugs are
already caught by the compiler.

1


