7
First Applications of Suffix Trees

We will see many applications of suffix trees throughout the book. Most of these
applications allow surprisingly efficient, linear-time solutions to complex string prob-
lems. Some of the most impressive applications need an additional tool, the constant-time
lowest common ancestor algorithm, and so are deferred until that algorithm has been dis-
cussed (in Chapter 8). Other applications arise in the context of specific problems that
will be discussed in detail later. But there are many applications we can now discuss that
illustrate the power and utility of suffix trees. In this chapter and in the exercises at its end,
several of these applications will be explored.

Perhaps the best way to appreciate the power of suffix trees is for the reader to spend
some time trying to solve the problems discussed below, without using suffix trees. Without
this effort or without some historical perspective, the availability of suffix trees may
make certain of the problems appear trivial, even though linear-time algorithms for those
problems were unknown before the advent of suffix trees. The longest common substring
problem discussed in Section 7.4 is one clear example, where Knuth had conjectured that
a linear-time algorithm would not be possible [24, 278], but where such an algorithm is
immediate with the use of suffix trees. Another classic example is the longest prefix repeat
problem discussed in the exercises, where a linear-time solution using suffix trees is easy,
but where the best prior method ran in O(n log n) time.

7.1. APL1: Exact string matching

There are three important variants of this problem depending on which string P or T is
known first and held fixed. We have already discussed (in Section 5.3) the use of suffix
trees in the exact string matching problem when the pattern and the text are both known
to the algorithm at the same time. In that case the use of a suffix tree achieves the same
worst-case bound, O(n + m), as the Knuth-Morris-Pratt or Boyer—Moore algorithms.

But the exact matching problem often occurs in the situation when the text T is known
first and kept fixed for some time. After the text has been preprocessed, a long sequence
of patterns is input, and for each pattern P in the sequence, the search for all occurrences
of P in T must be done as quickly as possible. Let n denote the length of P and k denote
the number of occurrences of P in T. Using a suffix tree for T, all occurrences can be
found in O(n + k) time, totally independent of the size of 7. That any pattern (unknown
at the preprocessing stage) can be found in time proportional to its length alone, and
after only spending linear time preprocessing 7', is amazing and was the prime motivation
for developing suffix trees. In contrast, algorithms that preprocess the pattern would take
O(n + m) time during the search for any single pattern P.

The reverse situation —when the pattern is first fixed and can be preprocessed before the
text is known — is the classic situation handled by Knuth-Morris-Pratt or Boyer—Moore,
rather than by suffix trees. Those algorithms spend O(n) preprocessing time so that the

122

7.2. APL2: SUFFIX TREES AND THE EXACT SET MATCHING PROBLEM 123

search can be done in O(m) time whenever a text T is specified. Can suffix trees be used
in this scenario to achieve the same time bounds? Although it 1s not obvious, the answer is
“yes”. This reverse use of suffix trees will be discussed along with a more general problem
in Section 7.8. Thus for the exact matching problem (single pattern), suffix trees can be
used to achieve the same time and space bounds as Knuth-Morris-Pratt'and Boyer—Moore
when the pattern is known first or when the pattern and text are known together, but they
achieve vastly superior performance in the important case that the text is known first and
held fixed, while the patterns vary.

7.2. APL2: Suffix trees and the exact set matching problem

Section 3.4 discussed the exact set matching problem, the problem of finding all occur-
rences from a set of strings P in a text T, where the set is input all at once. There we
developed a linear-time solution due to Aho and Corasick. Recall that set P is of total
length n and that text T is of length m. The Aho—Corasick method finds all occurrences
in T of any pattern from P in O(n + m + k) time, where & is the number of occurrences.
This same time bound is easily achieved using a suffix tree 7 for T. In fact, we saw in
the previous section that when T is first known and fixed and the pattern P varies, all
occurrences of any specific P (of length n) in T can be found in O(n + kp) time, where
kp is the number of occurrences of P. Thus the exact set matching problem is actually a
simpler case because the set P is input at the same time the text is known. To solve it, we
build suffix tree 7 for T in O(m) time and then use this tree to successively search for all
occurrences of each pattern in PP, The total time needed in this approach is O(n + m + k).

7.2.1. Comparing suffix trees and keyword trees
for exact set matching

Here we compare the relative advantages of keyword trees versus suffix trees for the exact
set matching problem. Although the asymptotic time and space bounds for the two methods
are the same when both the set P and the string T are specified together, one method may
be preferable to the other depending on the relative sizes of P and T and on which string
can be preprocessed. The Aho-Corasick method uses a keyword tree of size O(n), built
in O(n) time, and then carries out the search in O(m) time. In contrast, the suffix tree 7 is
of size O(m), takes O(m) time to build, and is used to search in O(n) time. The constant
terms for the space bounds and for the search times depend on the specific way the trees
are represented (see Section 6.5), but they are certainly large enough to affect practical
performance.

In the case that the set of patterns is larger than the text, the suffix tree approach uses less
space but takes more time to search. (As discussed in Section 3.5.1 there are applications in
molecular biology where the pattern library is much larger than the typical texts presented
after the library is fixed.) When the total size of the patterns is smaller than the text, the
Aho-Corasick method uses less space than a suffix tree, but the suffix tree uses less search
time. Hence, there is a time /space trade-off and neither method is uniformly superior to
the other in time and space. Determining the relative advantages of Aho-Corasick versus
suffix trees when the text is fixed and the set of patterns vary is left to the reader.

There is one way that suffix trees are better, or more robust, than keyword trees for the
exact set matching problem (in addition to other problems). We will show in Section 7.8
how to use a suffix tree to solve the exact set matching problem in exactly the same time

124 FIRST APPLICATIONS OF SUFFIX TREES

and space bounds as for the Aho—Corasick method — O(n) for preprocessing and O(m) for
search. This is the reverse of the bounds shown above for suffix trees. The time/space trade-
off remains, but a suffix tree can be used for either of the chosen time/space combinations,
whereas no such choice is available for a keyword tree.

7.3. APL3: The substring problem for a database of patterns

The substring problem was introduced in Chapter 5 (page 89). In the most interesting
version of this problem, a set of strings, or a database, is first known and fixed. Later, a
sequence of strings will be presented and for each presented string S, the algorithm must
find all the strings in the database containing S as a substring. This is the reverse of the
exact set matching problem where the issue is to find which of the fixed patterns are in a
substring of the input string.

In the context of databases for genomic DNA data [63, 320], the problem of finding
substrings is a real one that cannot be solved by exact set matching. The DNA database
contains a collection of previously sequenced DNA strings. When a new DNA string is
sequenced, it could be contained in an already sequenced string, and an efficient method
to check that is of value. (Of course, the opposite case is also possible, that the new string
contains one of the database strings, but that is the case of exact set matching.)

One somewhat morbid application of this substring problem is a simplified version of a
procedure that is in actual use to aid in identifying the remains of U.S. military personnel.
Mitochondrial DNA from live military personnel is collected and a small interval of each
person’s DNA is sequenced. The sequenced interval has two key properties: It can be
reliably isolated by the polymerase chain reaction (see the glossary page 528) and the
DNA string in it is highly variable (i.e., likely differs between different people). That
interval is therefore used as a “nearly unique” identifier. Later, if needed, mitochondrial
DNA is extracted from the remains of personnel who have been killed. By isolating
and sequencing the same interval, the string from the remains can be matched against a
database of strings determined earlier (or matched against a narrower database of strings
organized from missing personnel). The substring variant of this problem arises because
the condition of the remains may not allow complete extraction or sequencing of the
desired DNA interval. In that case, one looks to see if the extracted and sequenced string
is a substring of one of the strings in the database. More realistically, because of errors,
one might want to compute the length of the longest substring found both in the newly
extracted DNA and in one of the strings in the database. That longest common substring
would then narrow the possibilities for the identity of the person. The longest common
substring problem will be considered in Section 7.4.

The total length of all the strings in the database, denoted by m, is assumed to be large.
What constitutes a good data structure and lookup algorithm for the substring problem?
The two constraints are that the database should be stored in a small amount of space and
that each lookup should be fast. A third desired feature is that the preprocessing of the
database should be relatively fast.

Suffix trees yield a very attractive solution to this database problem. A generalized
suffix tree 7 for the strings in the database is built in O(m) time and, more importantly,
requires only O(m) space. Any single string S of length n is found in the database, or
declared not to be there, in O(n) time. As usual, this is accomplished by matching the
string against a path in the tree starting from the root. The full string § is in the database
if and only if the matching path reaches a leaf of 7 at the point where the last character of

7.4. APL4: LONGEST COMMON SUBSTRING OF TWO STRINGS 128

S is examined. Moreover, if S is a substring of strings in the database then the algorithm
can find all strings in the database containing S as a substring. This takes O(n + k) time,
where k is the number of occurrences of the substring. As expected, this is achieved by
traversing the subtree below the end of the matched path for S. If the full stféing § cannot
be matched against a path in 7, then S is not in the database, and neither is it contained
in any string there. However, the matched path does specify the longest prefix of S that is
contained as a substring in the database.

The substring problem is one of the classic applications of suffix trees. The results
obtained using a suffix tree are dramatic and not achieved using the Knuth-Morris-Pratt,
Boyer-Moore, or even the Aho—Corasick algorithm.

7.4. APL4: Longest common substring of two strings

A classic problem in string analysis is to find the longest substring common to two given
strings S, and S,. This is the longest common substring problem (different from the longest
common subsequence problem, which will be discussed in Sections 11.6.2 and 12.5 of
Part 1IT).

For example, if S, = superiorcalifornialives and S, = sealiver, then the longest com-
mon substring of S, and §; is alive.

An efficient and conceptually simple way to find a longest common substring is to build
a generalized suffix tree for §; and S,. Each leaf of the tree represents either a suffix from
one of the two strings or a suffix that occurs in both the strings. Mark each internal node
v with a 1 (2) if there is a leaf in the subtree of v representing a suffix from §; (S,). The
path-label of any internal node marked both 1 and 2 is a substring common to both §;
and S, and the longest such string is the longest common substring. So the algorithm has
only to find the node with the greatest string-depth (number of characters on the path to
it) that is marked both 1 and 2. Construction of the suffix tree can be done in linear time
(proportional to the total length of §, and §;), and the node markings and calculations of
string-depth can be done by standard linear-time tree traversal methods.

In summary, we have

Theorem 7.4.1. The longest common substring of two strings can be found in linear time
using a generalized suffix tree.

Although the longest common substring problem looks trivial now, given our knowledge
of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a
linear-time algorithm for this problem would be impossible [24, 278]. We will return to
this problem in Section 7.9, giving a more space efficient solution.

Now recall the problem of identifying human remains mentioned in Section 7.3. That
problem reduced to finding the longest substring in one fixed string that is also in some
string in a database of strings. A solution to that problem is an immediate extension of the
longest common substring problem and is left to the reader.

7.5. APLS: Recognizing DNA contamination

Often the various laboratory processes used to isolate, purify, clone, copy, maintain, probe,
or sequence a DNA string will cause unwanted DNA to become inserted into the string
of interest or mixed together with a collection of strings. Contamination of protein in the
laboratory can also be a serious problem. During cloning, contamination is often caused

126 FIRST APPLICATIONS OF SUFFIX TREES

by a fragment (substring) of a vector (DNA string) used to incorporate the desired DNA
in a host organism, or the contamination is from the DNA of the host itself (for example
bacteria or yeast). Contamination can also come from very small amounts of undesired
foreign DNA that gets physically mixed into the desired DNA and then amplified by
PCR (the polymerase chain reaction) used to make copies of the desired DNA. Without
going into these and other specific ways that contamination occurs, we refer to the general
phenomenon as DNA contamination.

Contamination is an extremely serious problem, and there have been embarrassing oc-
currences of large-scale DNA sequencing efforts where the use of highly contaminated
clone libraries resulted in a huge amount of wasted sequencing. Similarly, the announce-
ment a few years ago that DNA had been successfully extracted from dinosaur bone is
now viewed as premature at best. The “extracted” DNA sequences were shown, through
DNA database searching, to be more similar to mammal DNA (particularly human) [2]
than to bird and crockodilian DNA, suggesting that much of the DNA in hand was from
human contamination and not from dinosaurs. Dr. S. Blair Hedges, one of the critics of
the dinosaur claims, stated: “In looking for dinosaur DNA we all sometimes find material
that at first looks like dinosaur genes but later turns out to be human contamination, so we
move on to other things. But this one was published.” [80]

These embarrassments might have been avoided if the sequences were examined early
for signs of likely contaminants, before large-scale analysis was performed or results
published. Russell Doolittle [129] writes “...On a less happy note, more than a few
studies have been curtailed when a preliminary search of the sequence revealed it to be a
common contaminant . . . used in purification. As a rule, then, the experimentalist should
search early and often”.

Clearly, it is important to know whether the DNA of interest has been contaminated.
Besides the general issue of the accuracy of the sequence finally obtained, contamination
can greatly complicate the task of shotgun sequence assembly (discussed in Sections 16.14
and 16.15) in which short strings of sequenced DNA are assembled into long strings by
looking for overlapping substrings.

Often, the DNA sequences from many of the possible contaminants are known. These
include cloning vectors, PCR primers, the complete genomic sequence of the host organism
(yeast, for example), and other DNA sources being worked with in the laboratory. (The
dinosaur story doesn’t quite fit here because there isn’t yet a substantial transcript of human
DNA.) A good illustration comes from the study of the nemotode C. elegans, one of the
key model organisms of molecular biology. In discussing the need to use YACs (Yeast
Artificial Chromosomes) to sequence the C. elegans genome, the contamination problem
and its potential solution is stated as follows:

The main difficulty is the unavoidable contamination of purified YACs by substantial amounts
of DNA from the yeast host, leading to much wasted time in sequencing and assembling irrel-
evant yeast sequences. However, this difficulty should be eliminated (using). . . the complete
(yeast) sequence. . . It will then become possible to discard instantly all sequencing reads that
are recognizable as yeast DNA and focus exclusively on C. elegans DNA, [225]

This motivates the following computational problem:

DNA contamination problem Givenastring S, (the newly isolated and sequenced
string of DNA) and a known string S, (the combined sources of possible contam-
ination), find all substrings of S, that occur in §; and that are longer than some

7.6. APL6: COMMON SUBSTRINGS OF MORE THAN TWO STRINGS 127

given length /. These substrings are candidates for unwanted pieces of S, that have
contaminated the desired DNA string.

This problem can easily be solved in linear time by extending the approach discussed
above for the longest common substring of two strings. Build a generalized suffix tree
for S, and S;. Then mark each internal node that has in its subtree a leaf representing a
suffix of S, and also a leaf representing a suffix of S,. Finally, report all marked nodes that
have string-depth of { or greater. If v is such a marked node, then the path-label of v is a
suspicious string that may be contaminating the desired DNA string. If there are no marked
nodes with string-depth above the threshold /, then one can have greater confidence (but
not certainty) that the DNA has not been contaminated by the known contaminants,

More generally, one has an entire set of known DNA strings that might contaminate
a desired DNA string. The problem now is to determine if the DNA string in hand has
any sufficiently long substrings (say length / or more) from the known set of possible
contaminants. The approach in this case is to build a generalized suffix tree for the set
P of possible contaminants together with Sy, and then mark every internal node that has
a leaf in its subtree representing a suffix from §; and a leaf representing a suffix from a
pattern in P. All marked nodes of string-depth / or more identify suspicious substrings.

Generalized suffix trees can be built in time proportional to the total length of the strings
inthe tree, and all the other marking and searching tasks described above can be performed
in linear time by standard tree traversal methods, Hence suffix trees can be used to solve
the contamination problem in linear time. In contrast, it is not clear if the Aho—Corasick
algorithm can solve the problem in linear time, since that algorithm is designed to search
for occurrences of full patterns from P in §, rather than for substrings of patterns.

As in the longest common substring problem, there is a more space efficient solution to
the contamination problem, based on the material in Section 7.8. We leave this to the reader.

7.6. APL6: Common substrings of more than two strings

One of the most important questions asked about a set of strings is: What substrings are
common to a large number of the distinct strings? This is in contrast to the important
problem of finding substrings that occur repeatedly in a single string.

In biological strings (DNA, RNA, or protein) the problem of finding substrings common
to a large number of distinct strings arises in many different contexts, We will say much
more about this when we discuss database searching in Chapter 15 and multiple string
comparison in Chapter 14, Most directly, the problem of finding common substrings arises
because mutations that occur in DNA after two species diverge will more rapidly change
those parts of the DNA or protein that are less functionally important. The parts of the
DNA or protein that are critical for the correct functioning of the molecule will be more
highly conserved, because mutations that occur in those regions will more likely be lethal.
Therefore, finding DNA or protein substrings that occur commonly in a wide range of
species helps pointto regions or subpatterns that may be critical for the function or structure
of the biological string,

Less directly, the problem of finding (exactly matching) common substrings in a set
of distinct strings arises as a subproblem of many heuristics developed in the biological
literature to align a set of strings. That problem, called multiple alignment, will be discussed
in some detail in Section 14.10.3.

The biological applications motivate the following exact matching problem: Given a

128 FIRST APPLICATIONS OF SUFFIX TREES

set of strings, find substrings “common” to a large number of those strings. The word
“common” here means “occurring with equality”. A more difficult problem is to find
“similar” substrings in many given strings, where “similar’” allows a small number of
differences, Problems of this type will be discussed in Part IIL

Formal problem statement and first method

Suppose we have K strings whose lengths sum to 7.

Definition Foreach k between 2 and K, we define /(k) to be the length of the Jongest
substring common to at least k of the strings.

We want to compute a table of K — 1 entries, where entry k gives /(k) and also points
to one of the common substrings of that length. For example, consider the set of strings

{sandollar, sandlot, handler, grand, pantry}. Then the [(k) values (without pointers to the
strings) are:

k 1(k) one substring
2 4 sand

3 3 and

4 3 and

5 2 an

Surprisingly, the problem can be solved in linear, O(n), time [236]. It really is amazing
that so much information about the contents and substructure of the strings can be extracted
in time proportional to the time needed just to read in the strings. The linear-time algorithm
will be fully discussed in Chapter 9 after the constant-time lowest common ancestor
method has been discussed.

To prepare for the O(n) result, we show here how to solve the problem in O(Kn)
time. That time bound is also nontrivial but is achieved by a generalization of the longest
common substring method for two strings. First, build a generalized suffix tree 7 for the
K strings. Each leaf of the tree represents a suffix from one of the K strings and is marked
with one of K unique string identifiers, 1 to K, to indicate which string the suffix is from.
Each of the K strings is given a distinct termination symbol, so that identical suffixes
appearing in more than one string end at distinct leaves in the generalized suffix tree,
Hence, each leaf in 7 has only one string identifier.

Definition For every intemal node v of 7, define C(v) to be the number of distinct
string identifiers that appear at the leaves in the subtree of v,

Once the C(v) numbers are known, and the string-depth of every node is known, the
desired /(k) values can be easily accumulated with a linear-time traversal of the tree.
That traversal builds a vector V where, for each value of k from 2 to K, V (k) holds the
string-depth (and location if desired) of the deepest (string-depth) node v encountered
with C(v) = k. (When encountering a node v with C(v) = k, compare the string-depth
of v to the current value of V (k) and if v’s depth is greater than V(k), change V (k) to the
depth of v.) Essentially, V (k) reports the length of the longest string that occurs exactly
k times. Therefore, V (k) < I(k). To find I(k) simply scan V from largest to smallest
index, writing into each position the maximum V (k) value seen, That is, if V (k) is empty
or V(k) < V(k+ 1) then set V(k) to V(k + 1). The resulting vector holds the desired
{(k) values,

7.7. APL7: BUILDING A SMALLER DIRECTED GRAPH FOR EXACT MATCHING 129

7.6.1. Computing the C(v) numbers

In linear time, it is easy to compute for each internal node v the number of leaves in v’s
subtree. But that number may be larger than C(v) since two leaves in the subtree may have
the same identifier. That repetition of identifiers is what makes it hard to compute C(v)
in O(n) time. Therefore, instead of counting the number of leaves below v, the algorithm
uses O(Kn) time to explicitly compute which identifiers are found below any node. For
each internal node v, a K-length bit vector is created that has a 1 in bit i if there is a leaf
with identifier i in the subtree of v. Then C(v) is just the number of 1-bits in that vector.
The vector for v is obtained by ORing the vectors of the children of v. For / children, this
takes /K time. Therefore over the entire tree, since there are O(n) edges, the time needed
to build the entire table is O(K n). We will return to this problem in Section 9.7, where an
O(n) time solution will be presented.

7.7. APL7: Building a smaller directed graph for exact matching

As discussed before, in many applications space is the critical constraint, and any signif-
icant reduction in space is of value, In this section we consider how to compress a suffix
tree into a directed acyclic graph (DAG) that can be used to solve the exact matching prob-
lem (and others) in linear time but that uses less space than the tree. These compression
techniques can also be used to build a directed acyclic word graph (DAWG), which is
the smallest finite-state machine that can recognize suffixes of a given string. Linear-time
algorithms for building DAWGs are developed in [70], [71], and [115]. Thus the method
presented here to compress suffix trees can either be considered as an application of suffix
trees to building DAWGs or simply as a technique to compact suffix trees.

Consider the suffix tree for a string § = xyxaxaxa shown in Figure 7.1, The edge-
labeled subtree below node p is isomorphic to the subtree below node g, except for the leaf
numbers. That is, for every path from p there is a path from g with the same path-labels,
and vice versa. If we only want to determine whether a pattern occurs in a larger text,
rather than learning all the locations of the pattern occurrence(s), we could merge p into
g by redirecting the labeled edge from p’s parent to now go into g, deleting the subtree
of p as shown in Figure 7.2. The resulting graph is not a tree but a directed acyclic graph.

Clearly, after merging two nodes in the suffix tree, the resulting directed graph can

- ==

Figure 7.1: Suffix tree for string xyxaxaxa without suffix links shown.

130 FIRST APPLICATIONS OF SUFFIX TREES

Figure 7.2: A directed acyclic graph used to recognize substrings of xyxaxaxa.

be used to solve the exact matching problem in the same way a suffix tree is used. The
algorithm matches characters of the pattern against a unique path from the root of the
graph; the pattern occurs somewhere in the text if and only if all the characters of the
pattern are matched along the path. However, the leaf numbers reachable from the end of
the path may no longer give the exact starting positions of the occurrences. This issue will
be addressed in Exercise 10.

Since the graph is a DAG after the first merge, the algorithm must know how to merge
nodes in a DAG as well as in a tree. The general merge operation for both trees and DAGs
is stated in the following way:

A merge of node p into node g means that all edges out of p are removed, that the
edges into p are directed to g but have their original respective edge-labels, and that
any part of the graph that is now unreachable from the root is removed.

Although the merges generally occur in a DAG, the criteria used to determine which
nodes to merge remain tied to the original suffix tree —node p can be merged into g if the
edge-labeled subtree of p is isomorphic to the edge-labeled subtree of ¢ in the suffix tree.
Moreover, p can be merged into g, or g into p, only if the two subtrees are isomorphic.
So the key algorithmic issue is how to find isomorphic subtrees in the suffix tree. There
are general algorithms for subtree isomorphism but suffix trees have additional structure
making isomorphism detection much simpler.

Theorem 7.7.1. Ina suffix tree T the edge-labeled subtree below a node p is isomorphic
to the subtree below a node q if and only if there is a directed path of suffix links from one
node to the other node, and the number of leaves in the two subtrees is equal.

PROOF First suppose p has a direct suffix link to g and those two nodes have the same
number of leaves in their subtrees. Since there is a suffix link from p to ¢, node p has
path-label xo while g has path-label «. For every leaf numbered i in the subtree of p there
is a leaf numbered i + | in the subtree of g, since the suffix of T starting at i begins with
xa only if the suffix of T starting at i + | begins with «. Therefore, for every (labeled)
path from p to aleaf in its subtree, there is an identical path (with the same labeled edges)
from g to a leaf in its subtree. Now the numbers of leaves in the subtrees of p and g are
assumed to be equal, so every path out of g is identical to some path out of p, and hence
the two subtrees are isomorphic.

7.7. APL/: BUILDING A SMALLER DIRECTED GRAPH FOR EXACT MATCHING 131

By the same reasoning, if there is a path of suffix links from p to g going through a node
v, then the number of leaves in the subtree of v must be at least as large as the number in
the subtree of p and no larger than the number in the subtree of g. It follows that if p and ¢
have the same number of leaves in their subtrees, then all the subtrees below nodes on the
path have the same number of leaves, and all these subtrees are isomorphic to each other.

For the converse side, suppose that the subtrees of p and g are isomorphic. Clearly
then they have the same number of leaves. We will show that there is a directed path of
suffix links between p and g. Let o be the path-label of p and g be the path-label of g and
assume that |8| < |a].

Since B # «, if B is a suffix of « it must be a proper suffix. And, if g is a proper suffix
of «, then by the properties of suffix links, there is a directed path of suffix links from p
to g, and the theorem would be proved. So we will prove, by contradiction, that 8 must
be a suffix of a.

Suppose g is not a suffix of «. Consider any occurrence of «r in T and let y be the suffix
of T just to the right of that occurrence of «. That means that oy is a suffix of T and there
is a path labeled y running from node p to a leaf in the suffix tree. Now since g is not a
suffix of &, no suffix of T that starts just after an occurrence of g can have length |y |, and
therefore there is no path of length |y | from g to a leaf. But that implies that the subtrees
rooted at p and at g are not isomorphic, which is a contradiction. O

Definition Let O be the set of all pairs(p, ¢) such that a) there exists a suffix link from
ptog in 7, andb) p and g have the same number of leaves in their respective subtrees.

The entire procedure to compact a suffix tree can now be described.

Suffix tree compaction
begin

Identify the set Q of pairs (p, ¢) such that there is a suffix link from p to g and the
number of leaves in their respective subtrees is equal.

While there is a pair (p, g) in Q and both p and g are in the current DAG,
Merge node p into g.

end.
The “correctness” of the resulting DAG is stated formally in the following theorem.

Theorem 7.7.2. Let T be the suffix tree for an input string S, and let D be the DAG
resulting from running the compaction algorithm on T . Any directed path in D from the
root enumerates a substring of S, and every substring of S is enumerated by some such
path. Therefore, the problem of determining whether a string is a substring of S can be
solved in linear time using D instead of T .

DAG D can be used to determine whether a pattern occurs in a text, but the graph
seems to lose the location(s) where the pattern begins. It is possible, however, to add
simple (linear-space) information to the graph so that the locations of all the occurrences
can also be recovered when the graph is traversed. We address this issue in Exercise 10.

It may be surprising that, in the algorithm, pairs are merged in arbitrary order. We leave
the correctness of this, a necessary part of the proof of Theorem 7.7.2, as an exercise. As
a practical matter it makes sense to merge top-down, never merging two nodes that have
ancestors in the suffix tree that can be merged.

132 FIRST APPLICATIONS OF SUFFIX TREES

DAGs versus DAWGs

DAG D created by the algorithm is not a DAWG as defined in [70], [71], and [115]. A
DAWG represents a finite-state machine and, as such, each edge label is allowed to have
only one character. Moreover, the main theoretical feature of the DAWG for a string S is
that it is the finite-state machine with the fewest number of states (nodes) that recognizes
suffixes of S. Of course, D can be converted to a finite-state machine by expanding any
edge of D whose label has k characters into k edges labeled by one character each. But the
resulting finite-state machine would not necessarily have the minimum number of states,
and hence it would not necessarily be the DAWG for S.

Still, DAG D for string S has as few (or fewer) nodes and edges than does the associated
DAWG for §, and so is as compact as the DAWG even though it may not be a finite-state
machine. Therefore, construction of the DAWG for S is mostly of theoretical interest.
In Exercises 16 and 17 we consider how to build the smallest finite-state machine that
recognizes substrings of a string.

7.8. APLS: A reverse role for suffix trees, and major space reduction

We have previously shown how suffix trees can be used to solve the exact matching problem
with O(m) preprocessing time and space (building a suffix tree of size O(m) for the text
T) and O(n + k) search time (where n is the length of the pattern and k is the number of
occurrences). We have also seen how suffix trees are used to solve the exact set matching
problem in the same time and space bounds (n is now the total size of all the patterns
in the set). In contrast, the Knuth-Morris-Pratt (or Boyer-Moore) method preprocesses
the pattern in O(n) time and space, and then searches in O(m) time. The Aho-Corasick
method achieves similar bounds for the set matching problem.

Asymptotically, the suffix tree methods that preprocess the text are as efficient as the
methods that preprocess the pattern — both run in O(n + m) time and use ®©(n + m)
space (they have to represent the strings). However, the practical constants on the time
and space bounds for suffix trees often make their use unattractive compared to the other
methods. Moreover, the situation sometimes arises that the pattern(s) will be given first
and held fixed while the text varies. In those cases it is clearly superior to preprocess the
pattern(s). So the question arises of whether we can solve those problems by building a
suffix tree for the pattern(s), not the text. This is the reverse of the normal use of suffix
trees. In Sections 5.3 and 7.2.1 we mentioned that such a reverse role was possible, thereby
using suffix trees to achieve exactly the same time and space bounds (preprocessing versus
search time and space) as in the Knuth-Morris-Pratt or Aho-Corasick methods. To explain
this, we will develop a result due to Chang and Lawler [94], who solved a somewhat more
general problem, called the matching statistics problem.

7.8.1. Matching statistics: duplicating bounds and reducing space

Definition Define ms(i) to be the length of the longest substring of T starting at position
i that matches a substring somewhere (but we don’t know where) in P. These values are
called the matching statistics.

For example, if T = abcxabcdex and P = wyabcwzgabcdw then ms(1) = 3 and
ms(5) = 4.

Clearly, there is an occurrence of P starting at position i of T if and only if ms(i) = | P|.

7.8. APL8: A REVERSE ROLE FOR SUFFIX TREES, MAJOR SPACE REDUCTION 133

Thus the problem of finding the matching statistics is a generalization of the exact matching
problem,

Matching statistics lead to space reduction

Matching statistics can be used to reduce the size of the suffix tree needed in solutions to
problems more complex than exact matching. This use of matching statistics will probably
be more important than their use to duplicate the preprocessing/search bounds of Knuth-
Morris-Pratt and Aho—Corasick. The first example of space reduction using matching
statistics will be given in Section 7.9.

Matching statistics are also used in a variety of other applications described in the
book. One advertisement we give here is to say that matching statistics are central to a fast
approximate matching method designed for rapid database searching. This will be detailed
in Section 12.3.3. Thus matching statistics provide one bridge between exact matching
methods and problems of approximate string matching.

How to compute matching statistics

We want to compute ms(i), for each position i in T, in O(m) time using only a suffix tree
for P. First, build a suffix tree 7 for P, the fixed short string, but do not remove the suffix
links used during the construction of the tree. (The suffix links are either constructed by
Ukkonen’s algorithm or are the reverse of the link pointers in Weiner’s algorithm.) This
suffix tree will then be used to find ms(i) for each position i in 7.

The naive way to find a single ms(i) value is to match, left to right, the initial characters
of T[i..m] against 7, by following the unique path of matches until no further matches
are possible. However, repeating this for each i would not achieve the claimed linear time
bound. Instead, the suffix links are used to accelerate the entire computation, similar to
the way they accelerate the construction of 7 in Ukkonen’s algorithm.

To learn ms(1), we match characters of string 7 against 7, by following the unique
matching path of T[l..m]. The length of that matching path is ms(1). Now suppose in
general that the algorithm has just followed a matching path to learn ms(i) for i < |m|.
That means that the algorithm has located a point b in 7 such that the path to that point
exactly matches a prefix of T'[i..m], but no further matches are possible (possibly because
a leaf has been reached).

Having learned ms(i), proceed as follows to learn ms(i + 1). If b is an internal node
v of 7 then the algorithm can follow its suffix link to a node s(v). If b is not an interna!
node, then the algorithm can back up to the node v just above b. If v is the root, then the
search for ms(i + 1) begins at the root. But if v is not the root, then the algorithm follows
the suffix link from v to s(v). The path-label of v, say x«, is a prefix of T[i..m], so & must
be a prefix of T[i + l..m]. But s(v) has path-label «, and hence the path from the root to
s(v) matches a prefix of T[i + 1..m]. Therefore, the search for ms(i + 1) can start at node
s(v) rather than at the root.

Let B denote the string between node v and point b. Then xaf is the longest substring
in P that matches a substring starting at position i of 7. Hence 8 is a string in P matching
a substring starting at position i + |1 of 7. Since s(v) has path-label «, there must be a path
labeled B out of s(v). Instead of traversing that path by examining every character on it,
the algorithm uses the skip/count trick (detailed in Ukkonen’s algorithm; Section 6.1.3)
to traverse it in time proportional to the number of nodes on the path.

When the end of that g path is reached, the algorithm continues to match single
characters from 7T against characters in the tree until either a leaf is reached or until

134 FIRST APPLICATIONS OF SUFFIX TREES

no further matches are possible. In either case, ms(i + 1) is the string-depth of the ending
position. Note that the character comparisons done after reaching the end of the g path
begin either with the same character in T that ended the search for ms(i) or with the next
character in 7, depending on whether that search ended with a mismatch or at a leaf.

There isone special case that canarise in computing ms(i+1). lif ms(i) = lorms(i) =0
(so that the algorithm is at the root), and 7(i + 1) is not in P, then ms(i + 1) = 0.

7.8.2. Correctness and time analysis for matching statistics

The proof of correctness of the method is immediate since it merely simulates the naive
method for finding each ms(i). Now consider the time required by the algorithm. The
analysis is very similar to that done for Ukkonen’s algorithm.

Theorem 7.8.1. Using only a suffixtree for P and a copy of T, all the m matching statistics
can be found in O(m) time.

PROOF The search for any ms(i + 1) begins by backing up at most one edge from position
b to a node v and traversing one suffix link to node s(v). From s(v) a g path is traversed
in time proportional to the number of nodes on it, and then a certain number of additional
character comparisons are done. The backup and link traversals take constant time per
i and so take O(m) time over the entire algorithm. To bound the total time to traverse
the various B paths, recall the notion of current node-depth from the time analysis of
Ukkonen’s algorithm (page 102). There it was proved that a link traversal reduces the
current depth by at most one (Lemma 6.1.2), and since each backup reduces the current
depth by one, the total decrements to current depth cannot exceed 2m. But since current
depth cannot exceed m or become negative, the total increments to current depth are
bounded by 3m. Therefore, the total time used for all the 8 traversals is at most 3m since
the current depth is increased at each step of any g traversal. It only remains to consider
the total time used in all the character comparisons done in the “after-8” traversals. The
key there is that the after-8 character comparisons needed to compute ms(i + 1), for
i > 1, begin with the character in T that ended the computation for ms(i) or with the
next character in 7. Hence the after-8 comparisons performed when computing ms(i) and
ms(i + 1) share at most one character in common. It follows that at most 2m comparisons
in total are performed during all the after-8 comparisons. That takes care of all the work
done in finding all the matching statistics, and the theorem is proved. O

7.8.3. A small but important extension

The number ms(i) indicates the length of the longest substring starting at position i of T
that matches a substring somewhere in P, but it does not indicate the location of any such
match in P. For some applications (such as those in Section 9.1.2) we must also know, for
each i, the location of at least one such matching substring. We next modify the matching
statistics algorithm so that it provides that information.

Definition For each position i in T, the number p(i) specifies a starting location in P
such that the substring starting at p(i) matches a substring starting at position i of T for
exactly ms(i) places.

In order to accumulate the p(i) values, first do a depth-first traversal of 7 marking each

7.9. APL9: SPACE-EFFICIENT LONGEST COMMON SUBSTRING ALGORITHM 13§

node v with the leaf number of one of the leaves in its subtree. This takes time linear in
the size of 7. Then, when using 7 to find each ms(i), if the search stops at a node u, the
desired p(i) is the suffix number written at u; otherwise (when the search stops on an edge
(u, v)), p(i) is the suffix number written at node v.

Back to STSs

Recall the discussion of STSs in Section 3.5.1. There it was mentioned that, because of
errors, exact matching may not be an appropriate way to find STSs in new sequences.
But since the number of sequencing errors is generally small, we can expect long regions
of agreement between a new DNA sequence and any STS it (ideally) contains. Those
regions of agreement should allow the correct identification of the STSs it contains. Using
a (precomputed) generalized suffix tree for the STSs (which play the role of P), compute
matching statistics for the new DNA sequence (which is 7) and the set of STSs. Generally,
the pointer p(i) will point to the appropriate STS in the suffix tree. We leave it to the reader
to flesh out the details. Note that when given a new sequence, the time for the computation
is just proportional to the length of the new sequence.

7.9. APL9: Space-efficient longest common substring algorithm

In Section 7.4, we solved the problem of finding the longest common substring of S, and S,
by building a generalized suffix tree for the two strings. That solution used O(|S;| + |S])
time and space. But because of the practical space overhead required to construct and use
a suffix tree, a solution that builds a suffix tree only for the smaller of the two strings may
be much more desirable, even if the worst-case space bounds remain the same. Clearly, the
longest common substring has length equal to the longest matching statistic ms(i). The
actual substring occurs in the longer string starting at position i and in the shorter string
starting at position p(i). The algorithm of the previous section computes all the ms(i) and
p(i) values using only a suffix tree for the smaller of the two strings, along with a copy
of the long string. Hence, the use of matching statistics reduces the space needed to solve
the longest common substring problem.

The longest common substring problem illustrates one of many space reducing applica-
tions of matching statistics to algorithms using suffix trees. Some additional applications
will be mentioned in the book, but many more are possible and we will not explicitly point
eachone out. The reader is encouraged to examine every use of suffix trees involving more
than one string, to find those places where such space reduction is possible.

7.10. APL10: All-pairs suffix-prefix matching

Here we present a more complex use of suffix trees that is interesting in its own right and
that will be central in the linear-time superstring approximation algorithm to be discussed
in Section 16.17.

Definition Given two strings S; and §;, any suffix of §; that matches a prefix of S, is
called a suffix-prefix match of S,, S;.

Givena collection of strings S = §y, S, ..., S; of total length m, the all-pairs suffix-
prefix problem is the problem of finding, for each ordered pair §;, §; in S, the longest
suffix-prefix match of §;, §;.

136 FIRST APPLICATIONS OF SUFFIX TREES

Motivation for the problem

The main motivation for the all-pairs suffix-prefix problem comes from its use in imple-
menting fast approximation algorithms for the shortest superstring problem (to be dis-
cussed in Section 16.17). The superstring problem is itself motivated by sequencing and
mapping problems in DNA that will be discussed in Chapter 16. Another motivation for
the shortest superstring problem, and hence for the all-pairs suffix-prefix problem, arises
in data compression; this connection will be discussed in the exercises for Chapter 16.

A different, direct application of the all-pairs suffix-prefix problem is suggested by
computations reported in [190]. In that research, a set of around 1,400 ESTs (see Sec-
tion 3.5.1) from the organism C. elegans (which is a worm) were analyzed for the presence
of highly conserved substrings called ancient conserved regions (ACRs). One of the main
objectives of the research was to estimate the number of ACRs that occur in the genes of
C. elegans. Their approach was to extrapolate from the number of ACRs they observed
in the set of ESTs. To describe the role of suffix-prefix matching in this extrapolation, we
need to remember some facts about ESTs.

For the purposes here, we can think of an EST as a sequenced DNA substring of length
around 300 nucleotides, originating in a gene of much greater length. If EST « originates
in gene B, then the actual location of substring « in 8 is essentially random, and many
different ESTs can be collected from the same gene 8. However, in the common method
used to collect ESTs, one does not learn the identity of the originating gene, and it is
not easy to tell if two ESTs originate from the same gene. Moreover, ESTs are collected
more frequently from some genes than others. Commonly, ESTs will more frequently be
collected from genes that are more highly expressed (transcribed) than from genes that
are less frequently expressed. We can thus consider ESTs as a biased sampling of the
underlying gene sequences. Now we return to the extrapolation problem.

The goal is to use the ACR data observed in the ESTs to estimate the number of ACRs
in the entire set of genes. A simple extrapolation would be justified if the ESTs were
essentially random samples selected uniformly from the entire set of C. elegans genes.
However, genes are not uniformly sampled, so a simple extrapolation would be wrong if
the prevalence of ACRs is systematically different in ESTs from frequently or infrequently
expressed genes. How can that prevalence be determined? When an EST is obtained, one
doesn’t know the gene it comes from, or how frequently that gene is expressed, so how
can ESTs from frequently sampled genes be distinguished from the others?

The approach taken in [190] is to compute the “overlap” between each pair of ESTs.
Since all the ESTs are of comparable length, the heart of that computation consists of solv-
ing the all-pairs suffix-prefix problem on the set of ESTs. An EST that has no substantial
overlap with another EST was considered in the study to be from an infrequently expressed
(and sampled) gene, whereas an EST that has substantial overlap with one or more of the
other ESTs is considered to be from a frequently expressed gene. (Because there may be
some sequencing errors, and because substring containment is possible among strings of
unequal length, one should also solve the all-pairs longest common substring problem.)
After categorizing the ESTs in this way, it was indeed found that ACRs occur more com-
monly in ESTs from frequently expressed genes (more precisely, from ESTs that overlap
other ESTs). To explain this, the authors [190] conclude:

These results suggest that moderately expressed proteins have, on average, been more highly
conserved in sequence over long evolutionary periods than have rarely expressed ones and in
particular are more likely to contain ACRs. This is presumably attributable in part to higher
selective pressures to optimize the activities and structures of those proteins . ..

7.10. APL10: ALL-PAIRS SUFFIX-PREFIX MATCHING 137

7.10.1. Solving the all-pairs suffix-prefix problem in linear time

Forasingle pair of strings, the preprocessing discussed in Section 2.2.4 will find the longest
suffix-prefix match in time linear in the length of the two strings. However, applying the
preprocessing to each of the k? pairs of strings separately gives a total bound of O(km)
time. Using suffix trees itis possible to reduce the computation time to O(m-+k?2), assuming
(as usual) that the alphabet is fixed.

Definition We call an edge a terminal edge if it is labeled only with a string termination
symbol. Clearly, every terminal edge has a leaf at one end, but not all edges touching
leaves are terminal edges.

The main data structure used to solve the all-pairs suffix-prefix problem is the gener-
alized suffix tree 7(S) for the k strings in set S. As 7(S) is constructed, the algorithm
also builds a list L(v) for each internal node v. List L(v) contains the index i if and only
if v is incident with a terminal edge whose leaf is labeled by a suffix of string S;. That is,
L(v) holds index i if and only if the path label to v is a complete suffix of string S;. For
example, consider the generalized suffix tree shown in Figure 6.11 (page 117). The node
with path-label ba has an L list consisting of the single index 2, the node with path-label a
has a list consisting of indices | and 2, and the node with path-label xa has alist consisting
of index 1. All the other lists in this example are empty. Clearly, the lists can be constructed
in linear time during (or after) the construction of 7(S).

Now consider a fixed string §;, and focus on the path from the root of 7 (S) to the leaf
Jj representing the entire string S;. The key observation is the following: If v is a node on
this path and { is in L(v), then the path-label of v is a suffix of §; that matches a prefix
of §;. So for each index i, the deepest node v on the path to leaf j such thati € L(v)
identifies the longest match between a suffix of §; and a prefix of §;. The path-label of v
is the longest suffix-prefix match of (§;, §;). It is easy to see that by one traversal from the
root to leaf j we can find the deepest nodes forall | < i <k (i # j).

Following the above observation, the algorithm efficiently collects the needed suffix-
prefix matches by traversing 7 (S) in a depth-first manner. As itdoes, it maintains k stacks,
one for each string. During the depth-first traversal, when a node v is reached in a forward
edge traversal, push v onto the ith stack, for each i € L(v). When a leaf j (representing
the entire string §;) is reached, scan the k stacks and record for each index i the current
top of the ith stack. It is not difficult to see that the top of stack i contains the node v that
defines the suffix-prefix match of (S:, §;). If the ith stack is empty, then there is no overlap
between a suffix of string §; and a prefix of string §;. When the depth-first traversal backs
up past a node v, we pop the top of any stack whose index is in L(v).

Theorem 7.10.1. All the k* longest suffix-prefix matches are found in O(m + k*) time by
the algorithm. Since m is the size of the input and k? is the size of the output, the algorithm
is time optimal.

PROOF The total number of indices in all the lists L(v) is O(m). The number of edges
in 7(S) is also O(m). Each push or pop of a stack is associated with a leaf of 7(S), and
each leaf is associated with at most one pop and one push; hence traversing 7(S) and
updating the stacks takes O(m) time. Recording of each of the O(k?) answers is done in
constant time per answer. O

Extensions

We note two extensions. Let k' < k? be the number of ordered pairs of strings that have a
nonzero length suffix-prefix match. By using double links, we can maintain a linked list of

138 FIRST APPLICATIONS OF SUFFIX TREES

the nonempry stacks. Then when a leaf of the tree is reached during the traversal, only the
stacks on this list need be examined. In that way, all nonzero length suffix-prefix matches
can be found in O(m + k') time. Note that the position of the stacks in the linked list will
vary, since a stack that goes from empty to nonempty must be linked at one of the ends of the
list; hence we must also keep (in the stack) the name of the string associated with that stack.

At the other extreme, suppose we want to collect for every pair not just the longest
suffix-prefix match, but all suffix-prefix matches no matter how long they are. We modify
the above solution so that when the tops of the stacks are scanned, the entire contents of
each scanned stack is read out. If the output size is k*, then the complexity for this solution
is O(m + k™).

7.11. Introduction to repetitive structures in molecular strings

Several sections of this book (Sections 7.12, 7.12.1, 9.2, 9.2.2, 9.5, 9.6, 9.6.1, 9.7, and
7.6), as well as several exercises, are devoted to discussing efficient algorithms for finding
various types of repetitive structures in strings. (In fact, some aspects of one type of
repetitive structure, tandem repeats, have already been discussed in the exercises of Chapter
1, and more will be discussed later in the book.) The motivation for the general topic of
repetitive structures in strings comes from several sources, but our principal interest is
in important repetitive structures seen in biological strings (DNA, RNA, and protein). To
make this concrete, we briefly introduce some of those repetitive structures. The intent is
not to write a dissertation on repetitive DNA or protein, but to motivate the algorithmic
techniques we develop.

7.11.1. Repetitive structures in biological strings

One of the most striking features of DNA (and to a lesser degree, protein) is the extent
to which repeated substrings occur in the genome. This is particularly true of eukaryotes
(higher-order organisms whose DNA is enclosed in a cell nucleus). For example, most of
the human Y chromosome consists of repeated substrings, and overall

Families of reiterated sequences account for about one third of the human genome. [317]
There is a vast' literature on repetitive structures in DNA, and even in protein,
... reports of various kinds of repeats are too common even to list. [128]

In an analysis of 3.6 million bases of DNA from C. elegans, over 7,000 families of
repetitive sequences were identified [5]. In contrast, prokaryotes (organisms such as bac-
teria whose DNA is not enclosed in a nucleus) have in total little repetitive DNA, although
they still possess certain highly structured small-scale repeats.

In addition to its sheer quantity, repetitive DNA is striking for the variety of repeated
structures it contains, for the various proposed mechanisms explaining the origin and
maintenance of repeats, and for the biological functions that some of the repeats may play
(see [394] forone aspect of gene duplication). In many texts (forexample, [317], [469], and
[315]) on genetics or molecular biology one can find extensive discussions of repetitive
strings and their hypothesized functional and evolutionary role. For an introduction to
repetitive elements in human DNA, see [253] and [255].

! Tt is reported in [192] that a search of the database MEDLINE using the key (repeat OR repetitive) AND (protein
OR sequence) turned up over 6,000 papers published in the preceding twenty years.

7.11. INTRODUCTION TO REPETITIVE STRUCTURES 139

5/ TCGACCGGTCGA 3’
/£ VOOLODIOVOIL S

Figure 7.3: A palindrome in the vernacular of molecular biology. The double-stranded string is the same
afterreflection around both the horizontal and vertical midpoints. Each strandisa comp!emented palindrome
according to the definitions used in this book.

In the following discussion of repetitive structures in DNA and protein, we divide the
structures into three types: local, small-scale repeated strings whose function or origin is
at least partially understood; simple repeats, both local and interspersed, whose function
is less clear; and more complex interspersed repeated strings whose function is even more
in doubt.

Definition A palindrome is a string that reads the same backwards as forwards.

For emphasis, the Random House dictionary definition of “palindrome” is: a word,
sentence or verse reading the same backwards as forwards [441]. For example, the string
xyaayx is a palindrome under this definition. Ignoring spaces, the sentence was it a cat i
saw is another example,

Definition A complemented palindrome is a DNA or RNA string that becomes a palin-
drome if each character in one half of the string is changed to its complement character
(inDNA, A — T are complements and C — G are complements; inRNAA~-U andC -G
are complements). For example, AGCTCGCGAGCT is a complemented palindrome.>

Small-scale local repeats whose function or origin is partially understood include: com-
plemented palindromes in both DNA and RNA, which act to regulate DNA transcription
(the two parts of the complemented palindrome fold and pair to form a “hairpin loop”);
nested complemented palindromes in tRNA (transfer RNA) that allow the molecule to
fold up into a cloverleaf structure by complementary base pairing; tandem arrays of re-
peated RNA that flank retroviruses (viruses whose primary genetic material is RNA) and
facilitate the incorporation of viral DNA (produced from the RNA sequence by reverse
transcription) into the host’'s DNA; single copy inverted repeats that flank transposable
(movable) DNA in various organisms and that facilitate that movement or the inversion
of the DNA orientation; short repeated substrings (both palindromic and nonpalindromic)
in DNA that may help the chromosome fold into a more compact structure; repeated sub-
strings at the ends of viral DNA (in a linear state) that allow the concatenation of many
copies of the viral DNA (a molecule of this type is called a concatamer); copies of genes
that code for important RNAs (rRNAs and tRNAs) that must be produced in large number;
clustered genes that code for important proteins (such as histone) that regulate chromo-
some structure and must be made in large number; families of genes that code for similar
proteins (hemoglobins and myoglobins for example); similar genes that probably arose
through duplication and subsequent mutation (including pseudogenes that have mutated

? The use of the word “palindrome” in melecular biclogy does not conform to the normal English dictionary definition
of the word. The easiest translation of the molecular biologist’s “‘palindrome” to nermal English is; “complemented
palindrome”. A more molecular view is that a palindrome is a segment of double-stranded DNA or RNA such that
both strands read the same when both are read in the same direction, say in the 5’ to 3’ direction. Alternately, a
palindrome is a segment of double-stranded DNA that is symmetric (with respect to reflection) around both the
horizontal axis and the midpoint of the segment. (See Figure 7.3). Since the two strands are complementary, each
strand defines a complemenied palindrome in the sense defined above, The term “mitror repeat” is sometimes used
in the molecular biclogy literature to refer to a “palindrome™ as defined by the dictionary.

140 FIRST APPLICATIONS OF SUFFIX TREES

to the point that they no longer function); common exons of eukaryotic DNA that may
be basic building blocks of many genes; and common functional or structural subunits in
protein (motifs and domains).

Restriction enzyme cutting sites illustrate another type of small-scale, structured, re-
peating substring of great importance to molecular biology. A restriction enzyme is an
enzyme that recognizes a specific substring in the DNA of both prokaryotes and eukary-
otes and cuts (or cleaves) the DNA every place where that pattern occurs (exactly where
it cuts inside the pattern varies with the pattern). There are hundreds of known restriction
enzymes and their use has been absolutely critical in almost all aspects of modern molec-
ular biology and recombinant DNA technology. For example, the surprising discovery
that eukaryotic DNA contains introns (DNA substrings that interrupt the DNA of protein
coding regions), for which Nobel prizes were awarded in 1993, was closely coupled with
the discovery and use of restriction enzymes in the late 1970s.

Restriction enzyme cutting sites are interesting examples of repeats because they tend
to be complemented palindromic substrings. For example, the restriction enzyme EcoRI
recognizes the complemented palindrome GAATTC and cuts between the G and the ad-
joining A (the substring 7TC when reversed and complemented is GAA). Other restriction
enzymes recognize separated (or interrupted) complemented palindromes. For example,
restriction enzyme Bgll recognizes GCCNNNNNGGC, where N stands for any nucleotide.
The enzyme cuts between the last two Ns. The complemented palindromic structure has
been postulated to allow the two halves of the complemented palindrome (separated or
not) to fold and form complementary pairs. This folding then apparently facilitates either
recognition or cutting by the enzyme. Because of the palindromic structure of restric-
tion enzyme cutting sites, people have scanned DNA databases looking for common
repeats of this form in order to find additional candidates for unknown restriction enzyme
cutting sites.

Simple repeats that are less well understood often arise as tandem arrays (consecutive
repeated strings, also called “direct repeats™) of repeated DNA. For example, the string
TTAGGG appears at the ends of every human chromosome in arrays containing one to two
thousand copies [332]. Some tandem arrays may originate and continue to grow by a postu-
lated mechanism of unequal crossing over in meiosis, although there is serious opposition
to that theory. With unequal crossing over in meiosis, the likelihood that more copies will
be added in a single meiosis increases as the number of existing copies increases. A num-
ber of genetic diseases (Fragile X syndrome, Huntington’s disease, Kennedy’s disease,
myotonic dystrophy, ataxia) are now understood to be caused by increasing numbers of
tandem DNA repeats of a string three bases long. These triplet repeats somehow interfere
with the proper production of particular proteins. Moreover, the number of triples in the
repeat increases with successive generations, which appears to explain why the disease
increases in severity with each generation. Other long tandem arrays consisting of short
strings are very common and are widely distributed in the genomes of mammals. These
repeats are called satellite DNA (further subdivided into micro and mini-satellite DNA),
and their existence has been heavily exploited in genetic mapping and forensics. Highly
dispersed tandem arrays of length-two strings are common. In addition to tri-nucleotide
repeats, other mini-satellite repeats also play a role in human genetic diseases [286].

Repetitive DNA that is interspersed throughout mammalian genomes, and whose func-
tion and origin is less clear, is generally divided into SINEs (short interspersed nuclear
sequences) and LINEs (long interspersed nuclear sequences). The classic example of a
SINE is the Alu family. The Alu repeats occur about 300,000 times in the human genome

7.11. INTRODUCTION TO REPETITIVE STRUCTURES 141

and account for as much as 5% of the DNA of human and other mammalian genomes.
Alu repeats are substrings of length around 300 nucleotides and occur as nearly (but not
exactly) identical copies widely dispersed throughout the genome. Moreover, the interior
of an Alu string itself consists of repeated substrings of length around 40, and the Alu
sequence is often flanked on either side by tandem repeats of length 7-10. Those right and
left flanking sequences are usually complemented palindromic copies of each other. So
the Alu repeats wonderfully illustrate various kinds of phenomena that occur in repetitive
DNA. For an introduction to Alu repeats see [254].

One of the most fascinating discoveries in molecular genetics is a phenomenon called
genomic (or gametic) imprinting, whereby a particular allele of a gene is expressed only
when it is inherited from one specific parent [48, 227,391]. Sometimes the required parent
is the mother and sometimes the father. The allele will be unexpressed, or expressed
differently, if inherited from the “incorrect” parent. This is in contradiction to the classic
Mendelian rule of equivalence — that chromosomes (other than the Y chromosome) have
no memory of the parent they originated from, and that the same allele inherited from either
parent will have the same effect on the child. In mice and humans, sixteen imprinted gene
alleles have been found to date [48]. Five of these require inheritance from the mother,
and the rest from the father. The DNA sequences of these sixteen imprinted genes all share
the common feature that

They contain, or are closely associated with, a region rich in direct repeats. These repeats
range in size from 25 to 120 bp,? are unique to the respective imprinted regions, but have
no obvious homology to each other or to highly repetitive mammalian sequences. The direct
repeats may be an important feature of gametic imprinting, as they have been found in all
imprinted genes analyzed to date, and are also evolutionarily conserved. [48]

Thus, direct repeats seem to be important in genetic imprinting, but like many other
examples of repetitive DNA, the function and origin of these repeats remains a mystery.

7.11.2. Uses of repetitive structures in molecular biology

Atone point, most interspersed repeated DNA was considered as a nuisance, perhaps of no
functional or experimental value. But today a variety of techniques actually exploit the ex-
istence of repetitive DNA. Genetic mapping, mentioned earlier, requires the identification
of features (or markers) in the DNA that are highly variable between individuals and that
are interspersed frequently throughout the genome. Tandem repeats are just such markers.
What varies between individuals is the number of times the substring repeats in an array.
Hence the term used for this type of marker is variable number of tandem repeats (VNTR).
VNTRs occur frequently and regularly in many genomes, including the human genome,
and provide many of the markers needed for large-scale genetic mapping. These VNTR
markers are used during the genetic-level (as opposed to the physical-level) search for
specific defective genes and in forensic DNA fingerprinting (since the number of repeats
1s highly variable between individuals, a small set of VNTRs can uniquely characterize
individuals in a population). Tandem repeats consisting of a very short substring, often
only two characters long, are called microsatellites and have become the preferred marker
1n many genetic mapping efforts.

4 A detail not contained in this quote is that the direct (tandem) repeats in the genes studied [48] have a total length
of about 1.500 bases.

142 FIRST APPLICATIONS OF SUFFIX TREES

The existence of highly repetitive DNA, such as Alus, makes certain kinds of large-scale
DNA sequencing more difficult (see Sections 16.11 and 16.16), but their existence can
also facilitate certain cloning, mapping, and searching efforts. For example, one general
approach to low-resolution physical mapping (finding on a true physical scale where
features of interest are located in the genome) or to finding genes causing diseases involves
inserting pieces of human DNA that may contain a feature of interest into the hamster
genome. This technique is called somatic cell hybridization. Each resulting hybrid-hamster
cell incorporates different parts of the human DNA, and these hybrid cells can be tested
to identify a specific cell containing the human feature of interest. In this cell, one then
has to identify the parts of the hamster’s hybrid genome that are human. But what is a
distinguishing feature between human and hamster DNA?

One approach exploits the Alu sequences. Alu sequences specific to human DNA are
so common in the human genome that most fragments of human DNA longer than 20,000
bases will contain an Alu sequence [317]. Therefore, the fragments of human DNA in
the hybrid can be identified by probing the hybrid for fragments of Alu. The same idea
is used to isolate human oncogenes (modified growth-promoting genes that facilitate
certain cancers) from human tumors. Fragments of human DNA from the tumor are first
transferred to mouse cells. Cells that receive the fragment of human DNA containing the
oncogene become transformed and replicate faster than cells that do not. This isolates
the human DNA fragment containing the oncogene from the other human fragments,
but then the human DNA has to be separated from the mouse DNA. The proximity of
the oncogene to an Alu sequence is again used to identify the human part of the hybrid

genore [471]. A related technique, again using proximity to Alu sequences, 1s described
in [403].

Algorithmic problems on repeated structures

We consider specific problems concerning repeated structures in strings in several sections
of the book.* Admittedly, not every repetitive string problem that we will discuss is
perfectly motivated by a biological problem or phenomenon known today. A recurring
objection is that the first repetitive string problems we consider concern exact repeats
(although with complementation and inversion allowed), whereas most cases of repetitive
DNA involve nearly identical copies. Some techniques for handling inexact palindromes
(complemented or not) and inexact repeats will be considered in Sections 9.5 and 9.6.
Techniques that handle more liberal errors will be considered later in the book. Another
objection is that simple techniques suffice for small-length repeats. For example, if one
seeks repeating DNA of length ten, it makes sense to first build a table of all the 419 possible
strings and then scan the target DNA with a length-ten template, hashing substring locations
into the precomputed table.

Despite these objections, the fit of the computational problems we will discuss to
biological phenomena is good enough to motivate sophisticated techniques for handling
exact or nearly exact repetitions. Those techniques pass the “plausibility” test in that they,
or the ideas that underlie them, may be of future use in computational biology. In this
light, we now consider problems concerning exactly repeated substrings in a single string.

4 In a sense. the longest common substring problem and the k-common substring problem (Sections 7.6 and 9.7)
also concern repetitive substrings. However, the repeats in those problems occur across distinct strings, rather than
inside the same string. That distinction is critical, both in the definition of the problems and for the techniques used
to solve them, ’

7.12. APL11: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 143

7.12. APL11: Finding all maximal repetitive structures
in linear time

Before developing algorithms for finding repetitive structures, we must carefully define
those structures. A poor definition may lead to an avalanche of output. For example, if
a string consists of n copies of the same character, an algorithm searching for all pairs
of identical substrings (an initially reasonable definition of a repetitive structure) would
output ©(n*) pairs, an undesirable result. Other poor definitions may not capture the
structures of interest, or they may make reasoning about those structures difficult. Poor
definitions are particularly confusing when dealing with the set of all repeats of a particular
type. Accordingly, the key problem is to define repetitive structures in a way that does not
generate overwhelming output and yet captures all the meaningful phenomena in a clear
way. In this section, we address the issue through various notions of maximality. Other
ways of defining and studying repetitive structures are addressed in Exercises 56, 57, and
58 in this chapter; in exercises in other chapters; and in Sections 9.5, 9.6, and 9.6.1.

Definition A maximal pair (or a maximal repeated pair) in a string S is a pair of
identical substrings o and 8 in § such that the character to the immediate left (right) of
« is different from the character to the immediate left (right) of 8. That is, extending o
and B in either direction would destroy the equality of the two strings.

Definition A maximal pair is represented by the triple (p1, ps, n’), where p; and p,
give the starting positions of the two substrings and »n’ gives their length. For a string S,
we define R(S) to be the set of all triples describing maximal pairs in S.

For example, consider the string S = xabcyiiizabcgabcyrxar, where there are three
occurrences of the substring abc. The first and second occurrences of abc form a maximal
pair (2, 10, 3), and the second and third occurrences also form a maximal pair (10, 14, 3),
whereas the first and third occurrences of abc do not form a maximal pair. The two occur-
rences of the string abcy also form a maximal pair (2. 14, 4). Note that the definition allows
the two substrings in a maximal pair to overlap each other. For example, cxxaxxaxxb
contains a maximal pair whose substring is xxa.xx.

Generally, we also want to permit a prefix or a suffix of § to be part of a maximal pair.
For example, two occurrences of xa in xabcyiiizabcqabeyrxar should be considered
as a maximal pair. To model this case, simply add a character to the start of S and one to
the end of S that appear nowhere else in S. From this point on, we will assume that has
been done.

It may sometimes be of interest to explicitly find and output the full set R(S). However,
in some situations 7R(S) may be too large to be of use, and a more restricted reflection of
the maximal pairs may be sufficient or even preferred.

Definition Define a maximal repeat « as a substring of S that occurs in a maximal pair

in §. That is, o is a maximal repear in § if there is a triple (py, p2, |¢]) € R(S) and o

occurs in § starting at position p; and p,. Let R'(S) denote the set of maximal repeats

in S.

For example, with § as above, both strings abc and abcy are maximal repeats. Note
that no matter how many times a string participates in a maximal pair in S, it is represented
only once in R'(S). Hence |R'(S)| is less than or equal to |R(S)| and is generally much
smaller. The output is more modest, and yet it gives a good reflection of the maximal pairs.

In some applications, the definition of a maximal repeat does not properly model the
desired notion of a repetitive structure. For example, in § = aabxayaab, substring « is

144 FIRST APPLICATIONS OF SUFFIX TREES

a maximal repeat but so is aab, which is a superstring of string «, although not every
occurrence of « is contained in that superstring. It may not always be desirable to report
« as a repetitive structure, since the larger substring acb that sometimes contains o may
be more informative.

Definition A supermaximal repeat is a maximal repeat that never occurs as a substring
of any other maximal repeat.

Maximal pairs, maximal repeats, and supermaximal repeats are only three possible ways
to define exact repetitive structures of interest. Other models of exact repeats are given
in the exercises. Problems related to palindromes and tandem repeats are considered in
several sections throughout the book. Inexact repeats will be considered in Sections 9.5 and
9.6.1. Certainkinds of repeats are elegantly represented in graphical form in a device called
a landscape [104]. An efficient program to construct the landscape, based essentially on
suffix trees, is also described in that paper. In the next sections we detail how to efficiently
find all maximal pairs, maximal repeats, and supermaximal repeats.

7.12.1. A linear-time algorithm to find all maximal repeats

The simplest problem is that of finding all maximal repeats. Using a suffix tree, it is
possible to find them in O(n) time for a string of length n. Moreover, there is a compact
representation of all the maximal repeats, and it can also be constructed in O(n) time, even
though the total length of all the maximal repeats may be Q(n*). The following lemma
states a necessary condition for a substring to be a maximal repeat.

Lemma 7.12.1. Let T be the suffix tree for string S. If a string « is a maximal repeat in
S then « is the path-label of a node v in T .

PROOF Ifa is a maximal repeat then there must be at least two copies of & in § where the
character to the right of the first copy differs from the character to the right of the second
copy. Hence « is the path-label of anode vin 7. 0O

The key point in Lemma 7.12.1 is that path o must end at a node of 7. This leads
immediately to the following surprising fact:

Theorem 7.12.1. There can be at most n maximal repeats in any string of length n.

PROOF Since 7 has n leaves, and each internal node other than the root must have at

least two children, 7 can have at most n internal nodes. Lemma 7.12.1 then implies the
theorem. 0O

Theorem 7.12.1 would be a trivial fact if at most one substring starting at any position
i could be part of a maximal pair. But that is not true. For example, in the string § =
xabcyiiizabcqgabeyr considered earlier, both copies of substring abcy participate in
maximal pairs, while each copy of abc also participates in maximal pairs.

So now we know that to find maximal repeats we only need to consider strings that end
at nodes in the suffix tree 7", But which specific nodes correspond to maximal repeats?

Definition For each position i in string S, character S(i — 1) is called the left character

of i. The left character of a leaf of T is the left character of the suffix position represented
by that leaf.

Definition A node v of 7 is called left diverse if at least two leaves in v’s subtree have
different left characters. By definition. a leaf cannot be left diverse.

7.12. APL11: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 145

Note that being left diverse is a property that propagates upward. If a node v is left
diverse, so are all of its ancestors in the tree.

Theorem 7.12.2. The string « labeling the path to a node v of T is a maximal repeat if
and only if v is left diverse. -

PROOF Suppose first that v is left diverse. That means there are substrings xo and yo
in §, where x and y represent different characters. Let the first substring be followed
by character p. If the second substring is followed by any character but p, then o is a
maximal repeat and the theorem is proved. So suppose that the two occurrences are xop
and yap. Butsince v is a (branching) node there must also be a substring g in § for some
character g that is different from p. If this occurrence of ag is preceded by character x
then it participates in a maximal pair with string yap, and if it is preceded by y then it
participates in a maximal pair with xap. Either way, « cannot be preceded by both x and

y, s0 o must be part of a maximal pair and hence o must be a maximal repeat.
Conversely, if o is a maximal repeat then it participates in a maximal pair and there
must be occurrences of o that have distinct left characters, Hence v must be left diverse.
O

The maximal repeats can he compactly represented

Since the property of being left diverse propagates upward in 7, Theorem 7.12.2 implies
that the maximal repeats of S are represented by some initial portion of the suffix tree
for S. In detail, a node is called a “frontier” node in 7 if it is left diverse but none of
its children are left diverse. The subtree of 7 from the root down to the frontier nodes
precisely represents the maximal repeats in that every path from the root to a node at or
above the frontier defines a maximal repeat. Conversely, every maximal repeat is defined
by one such path. This subtree, whose leaves are the frontier nodes in 7, is a compact
representation® of the set of all maximal repeats of S. Note that the total length of the
maximal repeats could be as large as ©(n?), but since the representation is a subtree of 7
it has O(n) total size (including the symbols used to represent edge labels). So if the left
diverse nodes can be found in O(n) time, then a tree representation for the set of maximal
repeats can be constructed in O(n) time, even though the total length of those maximal
repeats could be Q(n*). We now describe an algorithm to find the left diverse nodes in 7.

Finding left diverse nodes in linear time

For each node v of 7, the algorithm either records that v is left diverse or it records the
character, denoted x, that is the left character of every leaf in v’s subtree. The algorithm
starts by recording the left character of each leaf of the suffix tree 7 for S. Then it processes
the nodes in 7 bottom up, To process a node v, it examines the children of v. If any child
of v has been identified as being left diverse, then it records that v is left diverse. If none
of v’s children are left diverse, then it examines the characters recorded at v’s children.
If these recorded characters are all equal, say x, then it records character x at node v.
However, if they are not all x, then it records that v is left diverse. The time to check if
all children of v have the same recorded character is proportional to the number of v’s
children. Hence the total time for the algorithrn is O(n). To form the final representation

of the set of maximal repeats, simply delete all nodes from 7 that are not left diverse. In
summary, we have

3 This kind of tree is sometimes referred to as a compact trie, but we will not use that terminology.

146 FIRST APPLICATIONS OF SUFFIX TREES

Theorem 7.12.3. All the maximal repeats in S can be found in O(n) time, and a tree
representation for them can be constructed from suffix tree T in O(n) time as well.

7.12.2. Finding supermaximal repeats in linear time

Recall that a supermaximal repeat is a maximal repeat that is not a substring of any other
maximal repeat. We establish here efficient criteria to find all the supermaximal repeats in

a string S. To do this, we solve the more general problem of finding near-supermaximal
repeats.

Definition A substring « of S is a near-supermaximal repeat if « is a maximal repeat
in S that occurs ar least once in a location where it is not contained in another maximal
repeat. Such an occurrence of « is said to witness the near-supermaximality of o.

For example, in the string aebxayaabxab, substring « is a maximal repeat but not a
supermaximal ora near-supermaximal repeat, whereas inaabxayaab, substring « is again
not supermaximal, but it is near-supermaximal. The second occurrence of o witnesses
that fact.

With this terminology, a supermaximal repeat o is a maximal repeat in which every
occurrence of « is a witness to its near-supermaximality. Note that it is not true that the
set of near-supermaximal repeats is the set of maximal repeats that are not supermaximal
repeats.

The suffix tree 7 for § will be used to locate the near-supermaximal and the supermax-
imal repeats. Let v be a node corresponding to a maximal repeat «, and let w (possibly a
leaf) be one of v’s children, The leaves in the subtree of 7 rooted at w identify the loca-
tions of some (but not all) of the occurrences of substring « in §. Let L(w) denote those
occurrences. Do any of those occurrences of @ witness the near-supermaximality of o?

Lemma 7.12.2. If node w is an internal node in T, then none of the occurrences of
specified by L(w) witness the near-supermaximality of .

PROOF Let y be the substring labeling edge (v, w). Every index in L(w) specifies an
occurrence of oy, But w is internal, so [L(w)| > | and oy is the prefix of a maximal
repeat. Therefore, all the occurrences of « specified by L(w) are contained in a maximal
repeat that begins @y, and w cannot witness the near-supermaximality of ¢. [

Thus no occurrence of & in L(w) can witness the near-supermaximality of o unless w
is aleaf. If w is a leaf, then w specifies a single particular occurrence of substring 8 = ay.
We now consider that case.

Lemma 7.12.3. Suppose w is a leaf, and let i be the (single) occurrence of B represented
by leaf w. Let x be the left character of leaf w. Then the occurrence of a at position i

witnesses the near-supermaximality of « if and only if x is the left character of no other
leaf below v.

PROOF If there is another occurrence of & with a preceding character x, then xo occurs
twice and so is either a maximal repeat or is contained in one. In that case, the occurrence
of & at { is contained in a maximal repeat.

If there is no other occurrence of o with a preceding x, then xa occurs only once
in §. Now let y be the first character on the edge from v to w. Since w is a leaf, ay
occurs only once in S. Therefore, the occurrence of « starting at i, which is preceded

7.12. APL11: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 147

by x and succeeded by y, is not contained in a maximal repeat, and so witnesses the
near-supermaximality of @, O

In summary, we can State

Theorem 7.12.4. A left diverse internal node v represents a near-supermaximal repeat o
ifand only if one of v’s children is a leaf (specifying position i, say) and its left character,
S(i — 1), is the left character of no other leaf below v. A left diverse internal node v
represents a supermaximal repeat o if and only if all of v’s children are leaves, and each
has a distinct left character.

Therefore, all supermaximal and near-supermaximal repeats can be identified in linear
time. Moreover, we can define the degree of near-supermaximality of o as the fraction
of occurrences of o that witness its near-supermaximality. That degree of each near-
supermaximal repeat can also be computed in linear time.

7.12.3. Finding all the maximal pairs in linear time

We now turn to the question of finding all the maximal pairs. Since there can be more
than O(n) of them, the running time of the algorithm will be stated in terms of the size of
the output. The algorithm is an extension of the method given earlier to find all maximal
repeats.

First, build a suffix tree for S. For each leaf specifying a suffix i, record its left character
S(i — 1). Now traverse the tree from bottom up, visiting each node in the tree. In detail,
work from the leaves upward, visiting a node v only after visiting every child of v. During
the visit to v, create at most o linked lists at each node, where ¢ is the size of the alphabet.
Each list is indexed by a left character x. The list at v indexed by x contains all the starting
positions of substrings in S that match the string on the path to v and that have the left
character x. That is, the list at v indexed by x is just the list of leaf numbers below v that
specify suffixes in S that are immediately preceded by character x.

Letting n denote the length of §, it is easy to create (but not keep) these lists in O(n)
total time, working bottom up in the tree. To create the list for character x at node v,
link together (but do not copy) the lists for character x that exist for each of v’s children.
Because the size of the alphabet is finite, the time for all linking is constant at each node.
Linking without copying is required in order to achieve the O(n) time bound. Linking
a list created at a node v’ to some other list destroys the list for v’. Fortunately, the lists
created at v’ will not be needed after the lists for its parent are created.

Now we show in detail how to use the lists available at v’s children to find all maximal
pairs containing the string that labels the path to v. At the start of the visit to node v,
before v’s lists have been created, the algorithm can output all maximal pairs (p;. pa. @),
where ¢ is the string labeling the path to v. For each character x and each child v’ of v,
the algorithm forms the Cartesian product of the list for x at v with the union of every
list for a character other than x at a child of v other than v’. Any pair in this list gives the
starting positions of a maximal pair for string . The proof of this is essentially the same
as the proof of Theorem 7.12.2.

If there are k maximal pairs, then the method works in O(n + k) time. The creation
of the suffix tree, its bottom up traversal, and all the list linking take O(n) time. Each
operation used in a Cartesian product produces a maximal pair not produced anywhere
else, so O(k) time is used in those operations. If we only want to count the number of

