HOMEWORK #5

(3 points) Implement FM-index search using a wavelet tree with ordinary
fixed-length and Huffman encoding. Let us recall that the FM-index consists of

o L =Dbwt(T), i.e. the last column in the matrix of all rotations of T

e F — the first column; F[c] = position where the lines starting with ¢ begin
e a data structure that supports computing rank, over L

e SA — sampled suffix array of T

Download the input file https://people.ksp.sk/ kuko/ds/du/bwt/SH.txt —
we will do the entire homework with this example.

Since implementation of the entire FM-index would be a relatively large
project, we will simplify it a bit:

We have already implemented the suffix array / BWT in the previous home-
work. You can use your own solution or one of these programs:

https://people.ksp.sk/ kuko/ds/src/but/

To achieve small memory footprint, FM-indices store just a small sample of the
suffix array — for simplicity, we’ll keep the whole thing.

Since the text contains < 32 different symbols, by fixed-length encoding,
we mean any encoding where each symbol is encoded by exactly 5 bits, e.g.,
\0 — 00000, . — 00001, a — 00010, b — 00011, ...

Count all the symbol frequencies and construct their Huffman code. The
first column F' is simply an array of prefix sums of these frequencies.

For an efficient binary rank, you can use an existing library implementation
— I recommend, for example, https://github.com/simongog/sdsl-1lite, you
can even compare different implementations: rank_support_v, rank_support_v5,
rank_support_rrr, rank_support_hyb,...

Once we have the BWT, the chosen encoding (fixed-length or Huffman) and
the chosen implementation of the rank, we can create a wavelet tree from the
BWT text and implement the function rank.(L, ).

Finally, implement search: if we are searching for the string P = pg ... pm—1,
we go backwards, from the last character, and maintain an interval of lines [s;, ;)
that start with P, ,,—1.

e Start — lines starting with symbol p,,_1 are:
[Smflaemfl) — [F[pmfl]aF[pmfl + 1])

e Step — going from [s;11,e;41) to [si,e;):
[si,€i) < [F[pi] + ranky, (L, si+1), Flpi] + ranky, (L, ei11))

e End — we get the interval [sg, ep) of rows starting with P

e Using the suffix array, we convert these indices to SA into positions in the
text T (test that your program indeed found occurrences of P)



Submit:

e Huffman code and fixed-length code — i.e. write down how exactly you
encoded each symbol

e what is the memory footprint (in bytes) of the wavelet tree with the two
encodings

e how long does the search take (measure this for example for random strings
or random substrings of T of length 10, 20, 30, ..., 100)



