
Homework #5

(3 points) Implement FM-index search using a wavelet tree with ordinary
fixed-length and Huffman encoding. Let us recall that the FM-index consists of

• L = bwt(T ), i.e. the last column in the matrix of all rotations of T

• F – the first column; F [c] = position where the lines starting with c begin

• a data structure that supports computing rankc over L

• SA – sampled suffix array of T .

Download the input file https://people.ksp.sk/~kuko/ds/du/bwt/SH.txt –
we will do the entire homework with this example.

Since implementation of the entire FM-index would be a relatively large
project, we will simplify it a bit:

We have already implemented the suffix array / BWT in the previous home-
work. You can use your own solution or one of these programs:

https://people.ksp.sk/~kuko/ds/src/bwt/

To achieve small memory footprint, FM-indices store just a small sample of the
suffix array – for simplicity, we’ll keep the whole thing.

Since the text contains < 32 different symbols, by fixed-length encoding,
we mean any encoding where each symbol is encoded by exactly 5 bits, e.g.,
\0→ 00000, → 00001, a→ 00010, b→ 00011, . . .

Count all the symbol frequencies and construct their Huffman code. The
first column F is simply an array of prefix sums of these frequencies.

For an efficient binary rank, you can use an existing library implementation
– I recommend, for example, https://github.com/simongog/sdsl-lite, you
can even compare different implementations: rank_support_v, rank_support_v5,
rank_support_rrr, rank_support_hyb,. . .

Once we have the BWT, the chosen encoding (fixed-length or Huffman) and
the chosen implementation of the rank, we can create a wavelet tree from the
BWT text and implement the function rankc(L, i).

Finally, implement search: if we are searching for the string P = p0 . . . pm−1,
we go backwards, from the last character, and maintain an interval of lines [si, ei)
that start with Pi...m−1.

• Start – lines starting with symbol pm−1 are:
[sm−1, em−1)← [F [pm−1], F [pm−1 + 1])

• Step – going from [si+1, ei+1) to [si, ei):
[si, ei)← [F [pi] + rankpi(L, si+1), F [pi] + rankpi(L, ei+1))

• End – we get the interval [s0, e0) of rows starting with P

• Using the suffix array, we convert these indices to SA into positions in the
text T (test that your program indeed found occurrences of P)

1



Submit:

• Huffman code and fixed-length code – i.e. write down how exactly you
encoded each symbol

• what is the memory footprint (in bytes) of the wavelet tree with the two
encodings

• how long does the search take (measure this for example for random strings
or random substrings of T of length 10, 20, 30, . . . , 100)

2


